GENERAL NOTES

- 1. MATERIAL SUPPLIER. NANA WALL SYSTEMS INC. ("NANAWALL") IS A MATERIAL SUPPLIER OF SLIDING & FOLDING PANEL SYSTEMS. NANAWALL DOES NOT PROVIDE INSTALLATION SERVICES OR DESIGN/ENGINEER SURROUNDING CONDITIONS AROUND THE OPENINGS TO WHICH NANAWALL'S SYSTEMS ARE TO BE INSTALLED. ANY SURROUNDING CONDITIONS SHOWN IN THESE DRAWINGS ARE MEANT FOR ILLUSTRATIVE PURPOSES ONLY AND WHAT IS SHOWN MAY NOT BE SUITABLE FOR ANY PARTICULAR PROJECT.
- 2. CUSTOMER RESPONSIBILITY. IT IS THE SOLE RESPONSIBILITY OF THE ARCHITECT, BUILDING OWNER, CONTRACTOR AND/OR CONSUMER (COLLECTIVELY "CUSTOMER") TO ENSURE COMPLIANCE WITH PROJECT PLANS AND SPECIFICATIONS AS WELL AS ALL APPLICABLE CODES AND REGULATIONS, INCLUDING FEDERAL, STATE AND LOCAL REQUIREMENTS. IT IS THE SOLE RESPONSIBILITY OF CUSTOMER TO DETAIL AND INSTALL NANAWALL PRODUCT IN AN OPENING WITH PROPER STRUCTURAL INTEGRITY AND FLASHING DETAILS NECESSARY TO ENSURE A WATER RESISTANT INSTALLATION.
- 3. ASSEMBLY & INSTALLATION. PRODUCTS ARE SUPPLIED "KNOCKED DOWN" FOR ASSEMBLY AND INSTALLATION BY OTHERS. PROPER ASSEMBLY, INSTALLATION, OPERATION AND MAINTENANCE IS ESSENTIAL FOR PROPER PERFORMANCE. WRITTEN INSTRUCTIONS ARE PROVIDED TO ALL CUSTOMERS TO FOLLOW. IT IS HIGHLY RECOMMENDED THAT AN EXPERIENCED INSTALLER OF NANAWALL'S PRODUCTS BE USED FOR RELEVANT ASPECTS OF ASSEMBLY AND INSTALLATION.

THE ROUGH OPENINGS MUST BE PLUMB, LEVEL, SQUARE AND WITHIN SPECIFIED BUILDING TOLERANCES. HEAD TRACK AND SILL (BOTTOM TRACK) COMPONENTS MAY BE SHIPPED IN SEGMENTS THAT WILL NEED TO BE FIELD JOINED PER NANAWALL INSTRUCTIONS. MAKE SURE THAT WHEN INSTALLED. THE JOINTS BETWEEN THE HEAD TRACK AND SILL COMPONENTS ARE SMOOTH AND TIGHT.

CUSTOMER IS REQUIRED TO FOLLOW PUBLISHED NANAWALL INSTALLATION INSTRUCTIONS. PRODUCT PLACEMENT, FASTENERS, FLASHING, WATERPROOFING, SEALANT AND OTHER DETAILS FOR SPECIFIC SURROUNDING CONDITIONS MUST BE DESIGNED AND PROVIDED BY OTHERS

4. STRUCTURAL SUPPORT. THE STRUCTURAL INTEGRITY OF THE FLOOR, HEADER AND/OR OVERHEAD SUPPORT FOR THE OPENING, AND ANY STACKING AREAS, IS CRITICAL FOR PROPER PERFORMANCE AND OPERATION. THE CALCULATIONS, MATERIALS AND INSTALLATION DETAILS MUST BE PROVIDED BY OTHERS.

THE VERTICAL DEFLECTION AT THESE AREAS UNDER FULL LIVE AND DEAD LOADS SHOULD BE THE LESSER OF L/720 OF THE SPAN OR 1/4". THE HEADER, SURROUNDING WALLS AND FLOOR MUST ALSO BE ABLE TO SUPPORT ANY LATERAL LOADS. PERIMETER FASTENERS AND SUBSTRATE MUST BE CAPABLE OF WITHSTANDING REACTION FORCES IMPOSED BY WIND AND/OR DEAD LOAD. THERE MAY BE ADDITIONAL STRUCTURAL REQUIREMENTS NOT MENTIONED HERE.

SPECIFIC AND DETAILED STRUCTURAL SUPPORT REQUIREMENTS MUST BE PROVIDED BY OTHERS, INCLUDING, BUT NOT LIMITED TO, SIZES, LOCATIONS OR FREQUENCY OF PERIMETER FASTENERS; ANCHORING TO THE SUBSTRATE; STRUCTURAL CALCULATIONS; AND ENGINEERING OF DETAILED ALUMINUM, WOOD AND GLASS SYSTEMS.

- 5. UNIT SIZES & ROUGH OPENING. CHECK SIZES ON DRAWINGS CAREFULLY AND NOTE THE MEASUREMENT POINTS FOR UNIT WIDTH AND UNIT HEIGHT. APPROPRIATE SHIM SPACE MUST BE ADDED ON ALL FOUR (4) SIDES OF THE OPENING TO OBTAIN THE ROUGH OPENINGS. NOTE THE POSITION OF THE SILL RELATIVE TO THE FINISH FLOOR OR FINISH COUNTERTOP. ANY CHANGES ON WIDTH OR HEIGHT WILL REQUIRE REVISED DRAWINGS FOR FINAL APPROVAL.
- 6. ORIENTATION OF DRAWINGS. ELEVATIONS ARE VIEWED FROM THE INTERIOR FOR ALL NANAWALL SYSTEMS, WITH THE EXCEPTION OF THE HSW75, FSW75 AND CSW75 WHICH ARE VIEWED FROM THE EXTERIOR. CAREFULLY CHECK THE CONFIGURATIONS SHOWN FOR ACCURACY, INCLUDING NUMBER OF PANELS ON EACH SIDE OF THE OPENING AND DIRECTION OF SWING. FOR FOLDING SYSTEMS, THERE MUST BE AN ODD NUMBER OF PANELS IN EITHER DIRECTION TO HAVE A SWING PANEL THAT CAN BE OPERATED LIKE A MAN DOOR.
- 7. PRODUCT PERFORMANCE & TESTING. NANAWALL HAS NOT TESTED EACH PRODUCT FOR AIR LEAKAGE, WATER RESISTANCE AND STRUCTURAL LOADING CAPABILITIES. TESTING RESULTS AVAILABLE FROM NANAWALL ARE ONLY APPLICABLE FOR THE SPECIFIC UNITS AND CONFIGURATIONS TESTED IN LABORATORY CONDITIONS. TEST RESULTS WILL DEPEND ON VARIABLES SUCH AS THE SYSTEM, SILL, LOCKING MECHANISM, SIZE AND CONFIGURATION.
- DEPENDING ON SITE CONDITIONS, SILLS MAY NEED TO BE SITE MODIFIED BY OTHERS WITH WEEP HOLES FOR PROPER DRAINAGE. THE HIGH PERFORMANCE (RAISED) SILL IS CAPABLE OF A HIGHER WATER RESISTANCE CAPABILITY. NON-STANDARD UNITS, E.G. SEGMENTED OR CORNERLESS UNITS. WILL HAVE A LOWER PERFORMANCE RATING THAN A STANDARD UNIT SEE NANAWALL LITERATURE AND WEBSITE FOR FURTHER INFORMATION.

SYMBOLS **ABBREVIATIONS** = ABOVE FINISH FLOOR MM = MILIMETERS - DETAIL NUMBER NBN = NOTBY NANAWALL= DIMENSION NTS = NOT TO SCALE DETAIL INDICATOR DLO = DAYLIGHT OPENING OD = OPENING DIMENSION = DOOR OPENING OFD = OVERALL FRAME DIMENSION SHEET NUMBER = ELEVATION RO = ROUGH OPENING SDL = SIMULATED DIVIDED LITE = EQUAL DETAIL / SECTION TITLE = FRAME SIZE TBD = TO BE DETERMINED = FINISH FLOOR UW = UNIT WIDTH - SYSTEM TYPE 1 ELEVATION | ELEVATION / PLAN SECTION TITLE 3 1/2"=1'-0"

NANAWALL PRODUCT DRAWINGS

QUOTE NUMBER: 572867 ORDER NUMBER: 0

PROJECT NAME: Compton College Student Housing -

Compton, CA

CUSTOMER: HPI Architecture - San Diego, CA

SYSTEM INFORMATION

SYSTEM ON THIS DRAWING: NW ALUMINUM 640 FOLDING SYSTEM (ALU)

CONFIGURATION: OUTWARD 5 RIGHT

TYPE OF GLASS: SOLARGRAY TEMPERED WITH SOLARBAN 70 #2 + AIR SPACE + **CLEAR TEMPERED**

GLASS SPACER BAR FINISH: BLACK

HARDWARE FIRST OPENING PANEL(S): MULTI POINT LOCKING WITH LATCH, DEADBOLT AND LEVER HANDLES WITH RETURN ON BOTH SIDES ON

PRIMARY SWING PANEL ONLY (DOES NOT UNLOCK WITH ONE MOTION) ONLY AVAILABLE IN BRUSHED STAINLESS STEEL.

HARDWARE FINISH FIRST OPENING PANEL(S): STAINLESS STEEL WITH BRUSHED SATIN FINISH.

HARDWARE AND FINISH ON SECONDARY PANEL(S): 2 POINT LOCKING WITH FLAT HANDLE STAINLESS STEEL WITH BRUSHED SATIN FINISH

HINGE FINISH: BLACK ANODIZED

SILL TYPE: THERMALLY BROKEN LOW PROFILE SADDLE (FOR RESISTANCE AGAINST WIND DRIVEN RAIN. WEEP HOLES AND DRAIN CONNECTIONS BY OTHERS NECESSARY.

SILL FINISH: BLACK ANODIZED

PROFILE FINISH SCHEDULE	
○ WOOD	DESCRIPTION:
ANODIZED ALUMINUM BLACK ANODIZED	NOTE:
O POWDER COATED ALUMINUM	A REASONABLE DEGREE OF COLOR/FINISH VARIATION CAN BE EXPECTED IN VARIOUS COMPONENTS OF PRODUCT DUE TO DIFFERENT MATERIAL AND VARIATION FROM ANY SAMPLE PROVIDED. FOR WOOD PRODUCTS, THE COLOR AND TEXTURE CAN VARY, EVEN WITHIN THE SAME PIECE OF
	WOOD.

NOTES:

GENERAL NOTES - continued

A WATER RATING IS RELATIVE AND EVEN THE HIGHEST RATED PRODUCT MIGHT LEAK UNDER SEVERE, UNUSUAL, OR UNFORESEEN CLIMATIC CONDITIONS. PERFORMANCE OF NANAWALL PRODUCTS DEPENDS ON PROPER INSTALLATION AND USE OF THE PRODUCTS, AS WELL AS SELECTION OF THE PROPER SYSTEM FOR THE SITE CONDITIONS.

NANAWALL WILL NOT BE RESPONSIBLE FOR ANY COSTS ASSOCIATED WITH FIELD TESTING OF ANY NANAWALL PRODUCT. ANY TESTING OF NEWLY INSTALLED PRODUCT MUST BE PERFORMED IN COMPLIANCE WITH AAMA 502, INCLUDING WATER PENETRATION TESTING AT 2/3 TESTED LABORATORY PERFORMANCE. NANAWALL WILL REMEDIATE ANY PRODUCT FAILURE IT CONFIRMS. FAILURE OF TESTED PRODUCT DOES NOT EQUATE TO A FAILURE OF OTHER PRODUCTS. TESTING OF PRODUCT INSTALLED LONGER THAN SIX (6) MONTHS MUST BE TESTED IN COMPLIANCE WITH AAMA 511 AND BE DIRECTED AT RECREATION OF AN EXISTING IN-SERVICE CONDITION.

BUYER TO CONFIRM FROM APPLICABLE NANAWALL DESIGN WINDLOAD CHARTS THAT POSITIVE AND NEGATIVE DESIGN PRESSURES FOR THE PROJECT ARE MET FOR THE PANEL SIZES OF THE UNITS IN THE ORDER. THESE WINDLOAD CHARTS HAVE BEEN DERIVED FROM COMPARATIVE ANALYSIS OF STRUCTURAL LOAD TEST RESULTS PER ASTM E330 OF A TEST SPECIMEN. THE USE OF THESE WINDLOAD CHARTS WILL BE SUBJECT TO THE LIMITATIONS STATED ON THEM.

- 8. PROTECTION. ALL GLASS AND FINISHED MATERIAL MUST BE PROTECTED DURING THE CONSTRUCTION PHASE FROM ALL TYPES OF CONSTRUCTION OPERATIONS SUCH AS CEMENT SPLATTER, TAR, PAINT, WELDING OPERATIONS, FIREPROOFING OR ANY OTHER PROCESS THAT MAY BE HARMFUL TO THE APPEARANCE OR PERFORMANCE OF THE PROJECT MATERIALS.
- 9. UNLOADING PRODUCT. FOR STANDARD DELIVERY, UNLOADING OF PRODUCT FROM THE DELIVERY TRUCK IS THE RESPONSIBILITY OF BUYER. DUE TO THE WEIGHT OF THE PRODUCT APPROPRIATE MANPOWER AND/OR EQUIPMENT WILL BE NEEDED.
- 10. TEMPERED GLASS. ON RARE OCCASIONS, TEMPERED GLASS PANES SPONTANEOUSLY BREAK FOR NO APPARENT REASON. ONE POSSIBLE CAUSE IS NICKEL SULFIDE INCLUSIONS IN TEMPERED GLASS THAT CANNOT BE COMPLETELY PREVENTED. IN NANAWALL ALL GLASS SYSTEMS WITH NO VERTICAL STILES, ANOTHER POSSIBLE REASON FOR SPONTANEOUS GLASS BREAKAGE IS STRESS CONCENTRATIONS AROUND NICKS OR CHIPS NEAR THE EDGE OF THE GLASS PANES. PANELS SHOULD BE MOVED WITH CARE TO PREVENT GLASS-TO-GLASS CONTACT BETWEEN PANELS. INSTALL THE GLASS PROTECTOR GASKETS PROVIDED BY NANAWALL TO MINIMIZE THE CHANCE OF BREAKAGE SHOULD GLASS CONTACT OCCUR. ANY DAMAGED GLASS PANES ARE NOT THE RESPONSIBILITY OF NANAWALL AND SHOULD BE REPLACED AS SOON AS POSSIBLE.
- 11. NANAWALL DRAWINGS. THESE COPYRIGHTED DRAWINGS HAVE BEEN PREPARED IN ACCORDANCE WITH NANAWALL'S ORDER AGREEMENT AND ANY ACCEPTED CHANGE ORDER. FINAL APPROVAL BY THE BUYER CONSTITUTES ACCEPTANCE OF ALL DEVIATIONS TO THE CONTRACT DOCUMENTS MADE BY NANAWALL IN THESE DRAWINGS.

THESE DRAWINGS REPRESENT NANAWALL'S INTERPRETATION OF THE APPLICATION OF PRODUCTS TO THIS PROJECT IN FUNCTIONAL COMPLIANCE WITH THE ORDER AGREEMENT. IT IS IMPORTANT THAT THIS INTERPRETATION BE REVIEWED DIMENSIONALLY AND FUNCTIONALLY WITH RESPECT TO THE ARCHITECT'S ACTUAL INTENT, INTERFACING CONDITIONS, MATERIALS AND JOB SITE CONDITIONS. NANAWALL ASSUMES NO RESPONSIBILITY FOR ERRORS RESULTING FROM THE USE OF THESE DRAWINGS BY OTHER

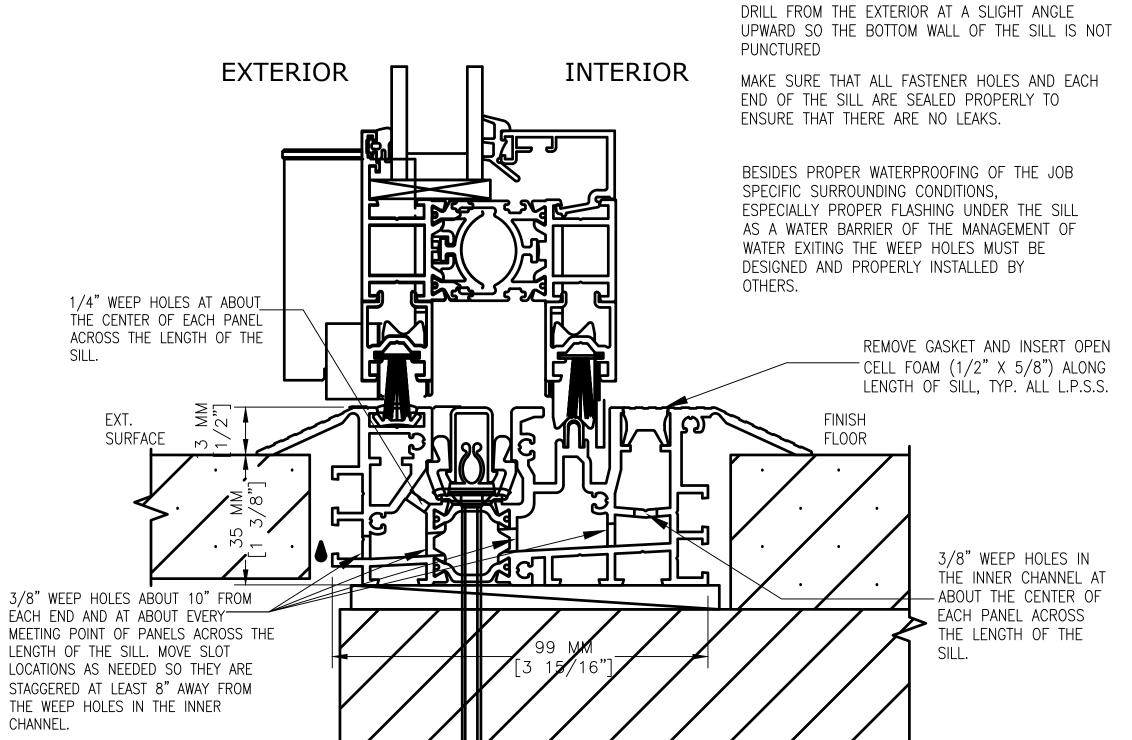
ANY CHANGES IN DIMENSIONS, DESIGN OR LAYOUT MADE AFTER PRODUCT DRAWINGS ARE PREPARED MAY RESULT IN THE NEED FOR REVISED DRAWINGS. REVISED DRAWINGS WILL RESULT IN AN EXTRA CHARGE TO BE DETERMINED BY NANAWALL AND PAID BY CUSTOMER BEFORE THE DRAWINGS ARE REVISED.

ALL DRAWINGS ARE ACCURATE IN METRIC DIMENSIONS. ENGLISH DIMENSIONS SHOWN ARE ROUNDED TO THE NEAREST 1/16". PRODUCT DRAWINGS SHOULD NOT BE SCALED. SCALE NOTED ON DRAWINGS ARE BASED ON A 24" X 36" PAPER FORMAT.

12. UNAUTHORIZED USE OF DRAWINGS. IN NO EVENT SHALL BUYER DISCLOSE, COPY OR USE ANY OF THE PRODUCT DRAWINGS PREPARED BY NANAWALL FOR ANY PURPOSE OTHER THAN IN RELATION TO THE PURCHASE OR INSTALLATION OF NANAWALL PRODUCT. ANY OTHER USE OF THESE PRODUCT DRAWINGS IS EXPRESSLY PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF NANAWALL. NANAWALL IS ENTITLED TO LIQUIDATED DAMAGES IN THE AMOUNT OF 20% OF THE PURCHASE PRICE OF THE CONTRACT FOR SALE FOR EACH VIOLATION.

IF YOU WOULD LIKE TO RECEIVE ELEVATION, FLOOR PLAN AND CROSS SECTION **DETAILS IN AUTOCAD, PLEASE CONTACT NANAWALL**

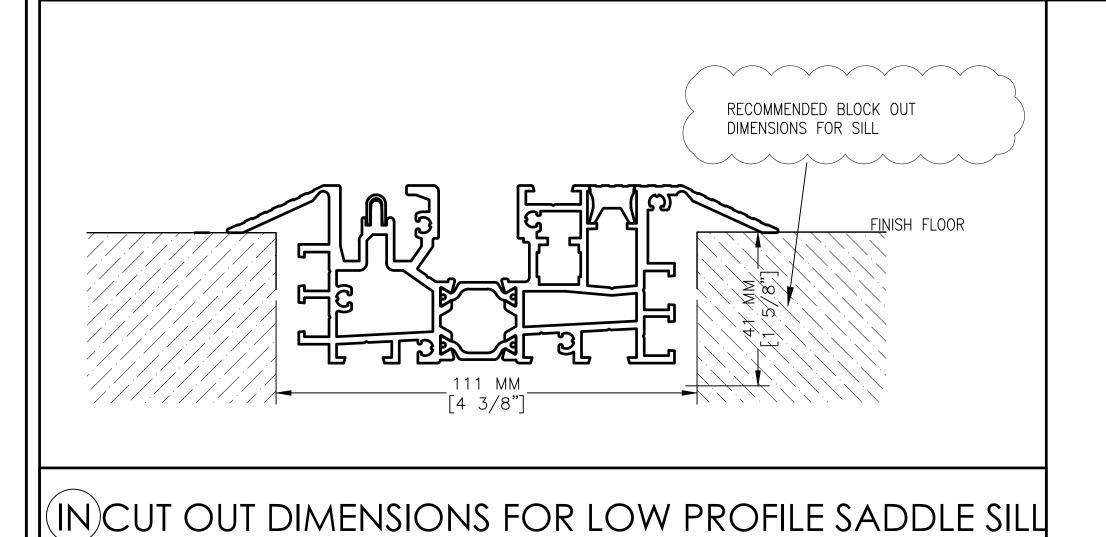
SHE	SHEET INDEX					
NO.	DESCRIPTION		EXTRA INFORM	MATION		
1	COVER SHEET					
2	INSTALLATION DETAIL SHEET(S)		NFRC:			
3	ELEVATIONS & PLAN SECTIONS		SHGC:			
4	DETAIL SHEET(S)		DESIGN PRESSURE:	0/0		

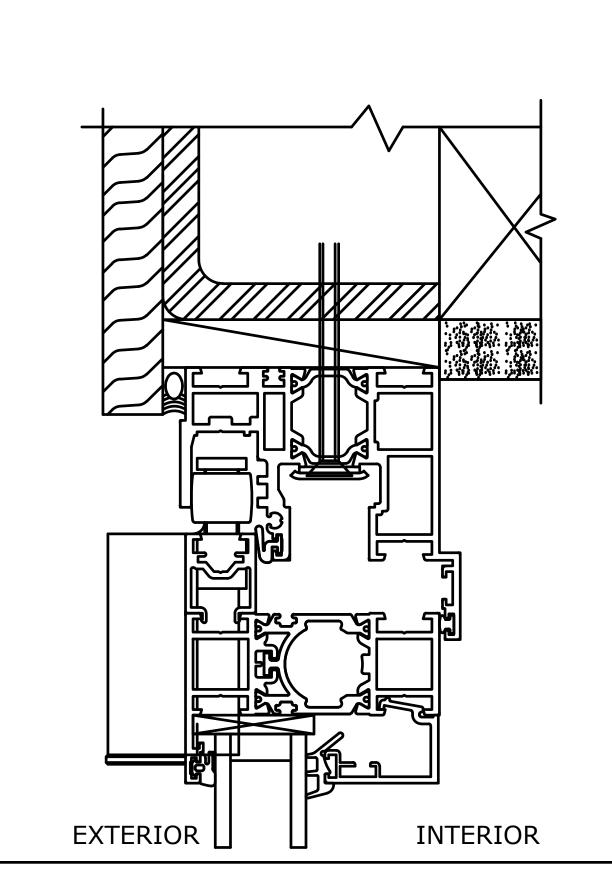

OJECT INFORMATION	☐ APPROVED APPROVAL	DATE	DRAWINGS ISSUED FOR	POSITION
, , , , , , , , , , , , , , , , , , ,	BY:	10/10/23	10/10/23 FIRST SUBMITTAL	NANAWALL POSITION NUMBER: 1
Ollege Studellt Housing —				CUSTOMER POSITION NUMBER: 1
	PRINTED NAME:			
resia bourevala, compron				
u, 90zzı omled sidles	DATE:			

Compton College Student	Compton, CA 1111 E Artesia Boulevard California, 90221 Unite		
VG. #			
RAWN	BY NDG		
ALE	N.T.S.		
JOTE	572867		
DED	0		

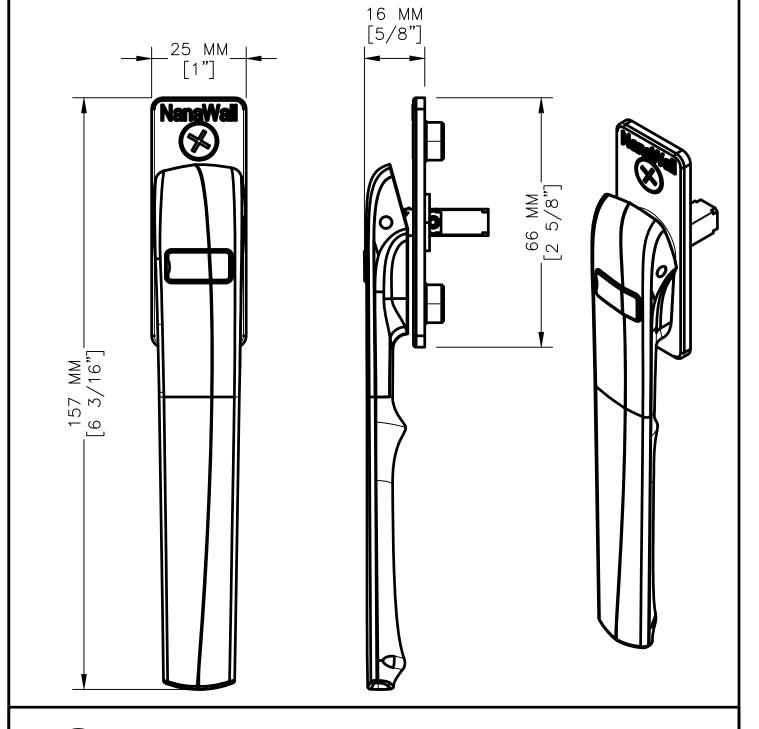
DETAILS ON PAGE 2 ARE NOT TO SCALE (SEE OWNER'S MANUAL FOR MORE DETAILS)

SG

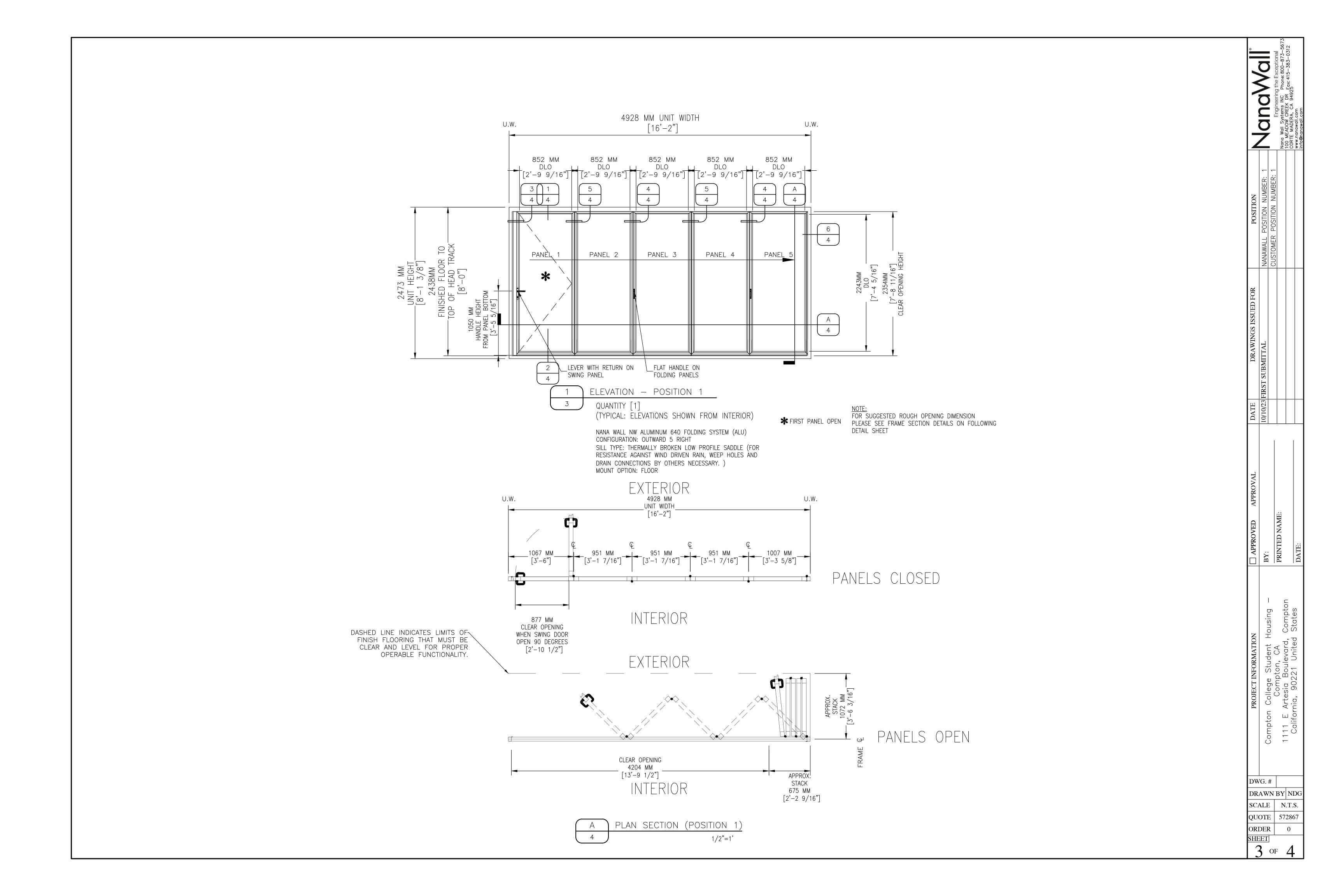

WEEP HOLES BY OTHERS NECESSARY FOR WATER RATING AS LAB TESTED

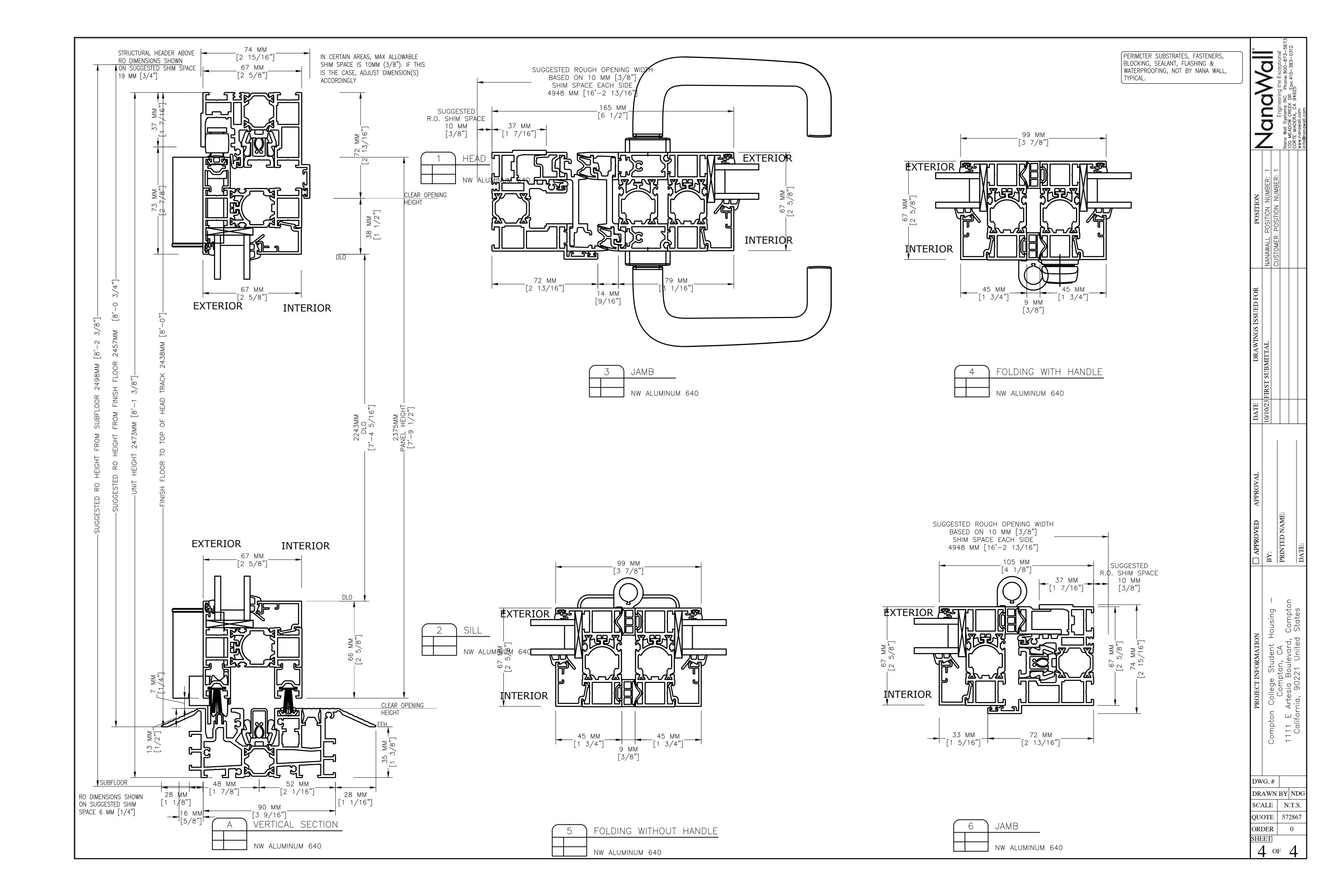

SUGGESTED INSTALLATION DETAIL

NW ALUMINUM 640


LOW PROFILE SADDLE SILL OUTWARD OPENING

(2) LEVER HANDLE WITH RETURN IN STAINLESS STEEL




SG SUGGESTED INSTALLATION DETAIL
NW ALUMINUM 640
HEAD TRACK OUTWARD OPENING

1) FLAT HANDLE IN STAINLESS STEEL

Nana/

GENERAL NOTES

- 1. MATERIAL SUPPLIER. NANA WALL SYSTEMS INC. ("NANAWALL") IS A MATERIAL SUPPLIER OF SLIDING & FOLDING PANEL SYSTEMS. NANAWALL DOES NOT PROVIDE INSTALLATION SERVICES OR DESIGN/ENGINEER SURROUNDING CONDITIONS AROUND THE OPENINGS TO WHICH NANAWALL'S SYSTEMS ARE TO BE INSTALLED. ANY SURROUNDING CONDITIONS SHOWN IN THESE DRAWINGS ARE MEANT FOR ILLUSTRATIVE PURPOSES ONLY AND WHAT IS SHOWN MAY NOT BE SUITABLE FOR ANY PARTICULAR PROJECT.
- 2. CUSTOMER RESPONSIBILITY. IT IS THE SOLE RESPONSIBILITY OF THE ARCHITECT, BUILDING OWNER, CONTRACTOR AND/OR CONSUMER (COLLECTIVELY "CUSTOMER") TO ENSURE COMPLIANCE WITH PROJECT PLANS AND SPECIFICATIONS AS WELL AS ALL APPLICABLE CODES AND REGULATIONS, INCLUDING FEDERAL, STATE AND LOCAL REQUIREMENTS. IT IS THE SOLE RESPONSIBILITY OF CUSTOMER TO DETAIL AND INSTALL NANAWALL PRODUCT IN AN OPENING WITH PROPER STRUCTURAL INTEGRITY AND FLASHING DETAILS NECESSARY TO ENSURE A WATER RESISTANT INSTALLATION.
- 3. ASSEMBLY & INSTALLATION. PRODUCTS ARE SUPPLIED "KNOCKED DOWN" FOR ASSEMBLY AND INSTALLATION BY OTHERS. PROPER ASSEMBLY, INSTALLATION, OPERATION AND MAINTENANCE IS ESSENTIAL FOR PROPER PERFORMANCE. WRITTEN INSTRUCTIONS ARE PROVIDED TO ALL CUSTOMERS TO FOLLOW. IT IS HIGHLY RECOMMENDED THAT AN EXPERIENCED INSTALLER OF NANAWALL'S PRODUCTS BE USED FOR RELEVANT ASPECTS OF ASSEMBLY AND INSTALLATION.

THE ROUGH OPENINGS MUST BE PLUMB, LEVEL, SQUARE AND WITHIN SPECIFIED BUILDING TOLERANCES. HEAD TRACK AND SILL (BOTTOM TRACK) COMPONENTS MAY BE SHIPPED IN SEGMENTS THAT WILL NEED TO BE FIELD JOINED PER NANAWALL INSTRUCTIONS. MAKE SURE THAT WHEN INSTALLED, THE JOINTS BETWEEN THE HEAD TRACK AND SILL COMPONENTS ARE SMOOTH AND TIGHT.

CUSTOMER IS REQUIRED TO FOLLOW PUBLISHED NANAWALL INSTALLATION INSTRUCTIONS. PRODUCT PLACEMENT, FASTENERS, FLASHING, WATERPROOFING, SEALANT AND OTHER DETAILS FOR SPECIFIC SURROUNDING CONDITIONS MUST BE DESIGNED AND PROVIDED BY OTHERS

4. STRUCTURAL SUPPORT. THE STRUCTURAL INTEGRITY OF THE FLOOR, HEADER AND/OR OVERHEAD SUPPORT FOR THE OPENING, AND ANY STACKING AREAS, IS CRITICAL FOR PROPER PERFORMANCE AND OPERATION. THE CALCULATIONS, MATERIALS AND INSTALLATION DETAILS MUST BE PROVIDED BY OTHERS.

THE VERTICAL DEFLECTION AT THESE AREAS UNDER FULL LIVE AND DEAD LOADS SHOULD BE THE LESSER OF L/720 OF THE SPAN OR 1/4". THE HEADER, SURROUNDING WALLS AND FLOOR MUST ALSO BE ABLE TO SUPPORT ANY LATERAL LOADS. PERIMETER FASTENERS AND SUBSTRATE MUST BE CAPABLE OF WITHSTANDING REACTION FORCES IMPOSED BY WIND AND/OR DEAD LOAD. THERE MAY BE ADDITIONAL STRUCTURAL REQUIREMENTS NOT MENTIONED HERE.

SPECIFIC AND DETAILED STRUCTURAL SUPPORT REQUIREMENTS MUST BE PROVIDED BY OTHERS, INCLUDING, BUT NOT LIMITED TO, SIZES, LOCATIONS OR FREQUENCY OF PERIMETER FASTENERS; ANCHORING TO THE SUBSTRATE; STRUCTURAL CALCULATIONS; AND ENGINEERING OF DETAILED ALUMINUM, WOOD AND GLASS SYSTEMS.

- 5. UNIT SIZES & ROUGH OPENING. CHECK SIZES ON DRAWINGS CAREFULLY AND NOTE THE MEASUREMENT POINTS FOR UNIT WIDTH AND UNIT HEIGHT. APPROPRIATE SHIM SPACE MUST BE ADDED ON ALL FOUR (4) SIDES OF THE OPENING TO OBTAIN THE ROUGH OPENINGS. NOTE THE POSITION OF THE SILL RELATIVE TO THE FINISH FLOOR OR FINISH COUNTERTOP. ANY CHANGES ON WIDTH OR HEIGHT WILL REQUIRE REVISED DRAWINGS FOR FINAL APPROVAL.
- **6. ORIENTATION OF DRAWINGS**. ELEVATIONS ARE VIEWED FROM THE INTERIOR FOR ALL NANAWALL SYSTEMS, WITH THE EXCEPTION OF THE HSW75, FSW75 AND CSW75 WHICH ARE VIEWED FROM THE EXTERIOR. CAREFULLY CHECK THE CONFIGURATIONS SHOWN FOR ACCURACY, INCLUDING NUMBER OF PANELS ON EACH SIDE OF THE OPENING AND DIRECTION OF SWING. FOR FOLDING SYSTEMS, THERE MUST BE AN ODD NUMBER OF PANELS IN EITHER DIRECTION TO HAVE A SWING PANEL THAT CAN BE OPERATED LIKE A MAN DOOR.
- 7. PRODUCT PERFORMANCE & TESTING. NANAWALL HAS NOT TESTED EACH PRODUCT FOR AIR LEAKAGE, WATER RESISTANCE AND STRUCTURAL LOADING CAPABILITIES. TESTING RESULTS AVAILABLE FROM NANAWALL ARE ONLY APPLICABLE FOR THE SPECIFIC UNITS AND CONFIGURATIONS TESTED IN LABORATORY CONDITIONS. TEST RESULTS WILL DEPEND ON VARIABLES SUCH AS THE SYSTEM, SILL, LOCKING MECHANISM, SIZE AND CONFIGURATION.
- DEPENDING ON SITE CONDITIONS, SILLS MAY NEED TO BE SITE MODIFIED BY OTHERS WITH WEEP HOLES FOR PROPER DRAINAGE. THE HIGH PERFORMANCE (RAISED) SILL IS CAPABLE OF A HIGHER WATER RESISTANCE CAPABILITY. NON-STANDARD UNITS, E.G. SEGMENTED OR CORNERLESS UNITS, WILL HAVE A LOWER PERFORMANCE RATING THAN A STANDARD UNIT. SEE NANAWALL LITERATURE AND WEBSITE FOR FURTHER INFORMATION.

ABBREVIATIONS		SYMBOLS
AFF = ABOVE FINISH FLOORMM Q = CENTER LINE NBN DIM. = DIMENSION NTS DLO = DAYLIGHT OPENING OD DO = DOOR OPENING OFD EL = ELEVATION RO EQ = EQUAL SDL FS = FRAME SIZE TBD FF = FINISH FLOOR UW	 MILIMETERS NOT BY NANAWALL NOT TO SCALE OPENING DIMENSION OVERALL FRAME DIMENSIO ROUGH OPENING SIMULATED DIVIDED LITE TO BE DETERMINED UNIT WIDTH 	DETAIL NUMBER DETAIL INDICATOR SHEET NUMBER DETAIL / SECTION TITLE SYSTEM TYPE 1 ELEVATION 1/2"=1'-0" ELEVATION / PLAN SECTION

NANAWALL PRODUCT DRAWINGS

QUOTE NUMBER: 572867 ORDER NUMBER: 0

PROJECT NAME: Compton College Student Housing -

Compton, CA

CUSTOMER: HPI Architecture - San Diego, CA

SYSTEM INFORMATION

SYSTEM ON THIS DRAWING: NW ALUMINUM 640 FOLDING SYSTEM (ALU)

CONFIGURATION: O1L,O4LR

TYPE OF GLASS: SOLARGRAY TEMPERED WITH SOLARBAN 70 #2 + AIR SPACE + CLEAR TEMPERED

GLASS SPACER BAR FINISH: BLACK

HARDWARE FIRST OPENING PANEL(S):

PANEL 1: NO HARDWARE OR LOCKING TO BE PROVIDED BY THE MANUFACTURER, BUT WITH FIELD INSTALLED PANIC DEVICE BY OTHERS.

PANEL 1:

HARDWARE AND FINISH ON SECONDARY PANEL(S): 2 POINT LOCKING WITH FLAT HANDLE STAINLESS STEEL WITH BRUSHED SATIN FINISH

HINGE FINISH: BLACK ANODIZED

SILL TYPE: THERMALLY BROKEN LOW PROFILE SADDLE (FOR RESISTANCE AGAINST WIND DRIVEN RAIN, WEEP HOLES AND DRAIN CONNECTIONS BY OTHERS NECESSARY.

SILL FINISH: BLACK ANODIZED

PROFILE FINISH SCHEDULE	
O WOOD	DESCRIPTION:
ANODIZED ALUMINUM BLACK ANODIZED	NOTE:
O POWDER COATED ALUMINUM	A REASONABLE DEGREE OF COLOR/FINISH VARIATION CAN BE EXPECTED IN VARIOUS COMPONENTS OF PRODUCT DUE TO DIFFERENT MATERIAL AND VARIATION FROM ANY SAMPLE PROVIDED. FOR WOOD PRODUCTS, THE COLOR AND TEXTURE CAN VARY, EVEN WITHIN THE SAME PIECE
	OF WOOD.

NOTES:

GENERAL NOTES - continued

A WATER RATING IS RELATIVE AND EVEN THE HIGHEST RATED PRODUCT MIGHT LEAK UNDER SEVERE, UNUSUAL, OR UNFORESEEN CLIMATIC CONDITIONS. PERFORMANCE OF NANAWALL PRODUCTS DEPENDS ON PROPER INSTALLATION AND USE OF THE PRODUCTS, AS WELL AS SELECTION OF THE PROPER SYSTEM FOR THE SITE CONDITIONS.

NANAWALL WILL NOT BE RESPONSIBLE FOR ANY COSTS ASSOCIATED WITH FIELD TESTING OF ANY NANAWALL PRODUCT. ANY TESTING OF NEWLY INSTALLED PRODUCT MUST BE PERFORMED IN COMPLIANCE WITH AAMA 502, INCLUDING WATER PENETRATION TESTING AT 2/3 TESTED LABORATORY PERFORMANCE. NANAWALL WILL REMEDIATE ANY PRODUCT FAILURE IT CONFIRMS. FAILURE OF TESTED PRODUCT DOES NOT EQUATE TO A FAILURE OF OTHER PRODUCTS. TESTING OF PRODUCT INSTALLED LONGER THAN SIX (6) MONTHS MUST BE TESTED IN COMPLIANCE WITH AAMA 511 AND BE DIRECTED AT RECREATION OF AN EXISTING IN-SERVICE CONDITION.

BUYER TO CONFIRM FROM APPLICABLE NANAWALL DESIGN WINDLOAD CHARTS THAT POSITIVE AND NEGATIVE DESIGN PRESSURES FOR THE PROJECT ARE MET FOR THE PANEL SIZES OF THE UNITS IN THE ORDER. THESE WINDLOAD CHARTS HAVE BEEN DERIVED FROM COMPARATIVE ANALYSIS OF STRUCTURAL LOAD TEST RESULTS PER ASTM E330 OF A TEST SPECIMEN. THE USE OF THESE WINDLOAD CHARTS WILL BE SUBJECT TO THE LIMITATIONS STATED ON THEM.

- **8. PROTECTION**. ALL GLASS AND FINISHED MATERIAL MUST BE PROTECTED DURING THE CONSTRUCTION PHASE FROM ALL TYPES OF CONSTRUCTION OPERATIONS SUCH AS CEMENT SPLATTER, TAR, PAINT, WELDING OPERATIONS, FIREPROOFING OR ANY OTHER PROCESS THAT MAY BE HARMFUL TO THE APPEARANCE OR PERFORMANCE OF THE PROJECT MATERIALS.
- **9. UNLOADING PRODUCT**. FOR STANDARD DELIVERY, UNLOADING OF PRODUCT FROM THE DELIVERY TRUCK IS THE RESPONSIBILITY OF BUYER. DUE TO THE WEIGHT OF THE PRODUCT, APPROPRIATE MANPOWER AND/OR EQUIPMENT WILL BE NEEDED.
- 10. TEMPERED GLASS. ON RARE OCCASIONS, TEMPERED GLASS PANES SPONTANEOUSLY BREAK FOR NO APPARENT REASON. ONE POSSIBLE CAUSE IS NICKEL SULFIDE INCLUSIONS IN TEMPERED GLASS THAT CANNOT BE COMPLETELY PREVENTED. IN NANAWALL ALL GLASS SYSTEMS WITH NO VERTICAL STILES, ANOTHER POSSIBLE REASON FOR SPONTANEOUS GLASS BREAKAGE IS STRESS CONCENTRATIONS AROUND NICKS OR CHIPS NEAR THE EDGE OF THE GLASS PANES. PANELS SHOULD BE MOVED WITH CARE TO PREVENT GLASS-TO-GLASS CONTACT BETWEEN PANELS. INSTALL THE GLASS PROTECTOR GASKETS PROVIDED BY NANAWALL TO MINIMIZE THE CHANCE OF BREAKAGE SHOULD GLASS CONTACT OCCUR. ANY DAMAGED GLASS PANES ARE NOT THE RESPONSIBILITY OF NANAWALL AND SHOULD BE REPLACED AS SOON AS POSSIBLE.
- 11. NANAWALL DRAWINGS. THESE COPYRIGHTED DRAWINGS HAVE BEEN PREPARED IN ACCORDANCE WITH NANAWALL'S ORDER AGREEMENT AND ANY ACCEPTED CHANGE ORDER. FINAL APPROVAL BY THE BUYER CONSTITUTES ACCEPTANCE OF ALL DEVIATIONS TO THE CONTRACT DOCUMENTS MADE BY NANAWALL IN THESE DRAWINGS.

THESE DRAWINGS REPRESENT NANAWALL'S INTERPRETATION OF THE APPLICATION OF PRODUCTS TO THIS PROJECT IN FUNCTIONAL COMPLIANCE WITH THE ORDER AGREEMENT. IT IS IMPORTANT THAT THIS INTERPRETATION BE REVIEWED DIMENSIONALLY AND FUNCTIONALLY WITH RESPECT TO THE ARCHITECT'S ACTUAL INTENT, INTERFACING CONDITIONS, MATERIALS AND JOB SITE CONDITIONS. NANAWALL ASSUMES NO RESPONSIBILITY FOR ERRORS RESULTING FROM THE USE OF THESE DRAWINGS BY OTHER TRADES

ANY CHANGES IN DIMENSIONS, DESIGN OR LAYOUT MADE AFTER PRODUCT DRAWINGS ARE PREPARED MAY RESULT IN THE NEED FOR REVISED DRAWINGS. REVISED DRAWINGS WILL RESULT IN AN EXTRA CHARGE TO BE DETERMINED BY NANAWALL AND PAID BY CUSTOMER BEFORE THE DRAWINGS ARE REVISED.

ALL DRAWINGS ARE ACCURATE IN METRIC DIMENSIONS. ENGLISH DIMENSIONS SHOWN ARE ROUNDED TO THE NEAREST 1/16". PRODUCT DRAWINGS SHOULD **NOT** BE SCALED. SCALE NOTED ON DRAWINGS ARE BASED ON A 24" X 36" PAPER FORMAT.

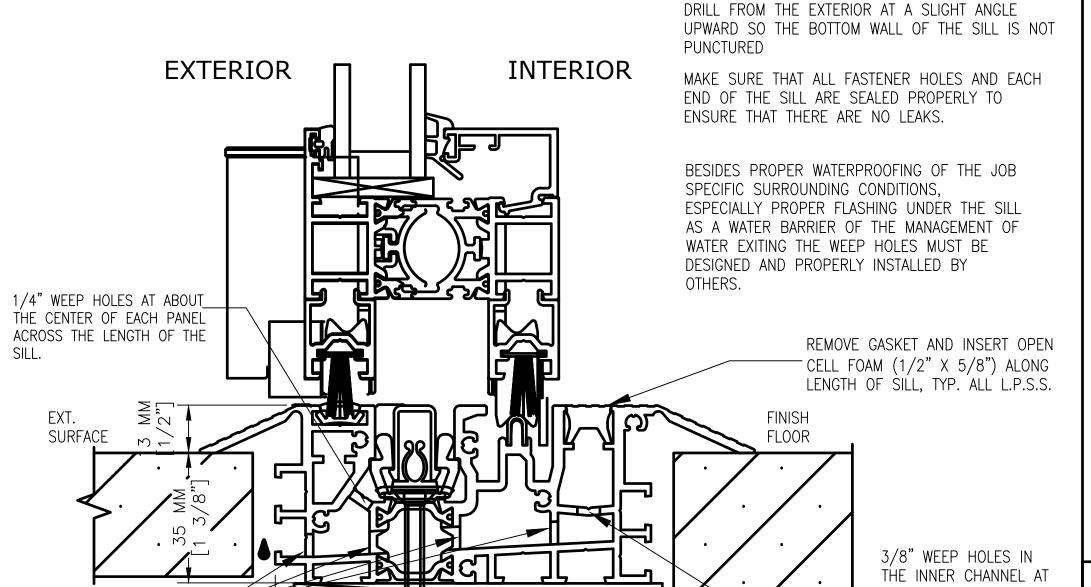
12. UNAUTHORIZED USE OF DRAWINGS. IN NO EVENT SHALL BUYER DISCLOSE, COPY OR USE ANY OF THE PRODUCT DRAWINGS PREPARED BY NANAWALL FOR ANY PURPOSE OTHER THAN IN RELATION TO THE PURCHASE OR INSTALLATION OF NANAWALL PRODUCT. ANY OTHER USE OF THESE PRODUCT DRAWINGS IS EXPRESSLY PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF NANAWALL. NANAWALL IS ENTITLED TO LIQUIDATED DAMAGES IN THE AMOUNT OF 20% OF THE PURCHASE PRICE OF THE CONTRACT FOR SALE FOR EACH VIOLATION.

IF YOU WOULD LIKE TO RECEIVE ELEVATION, FLOOR PLAN AND CROSS SECTION DETAILS IN AUTOCAD, PLEASE CONTACT NANAWALL

SHE	SHEET INDEX				
NO.	DESCRIPTION	EXTRA INFORMATION			
1	COVER SHEET				
2	INSTALLATION DETAIL SHEET(S)	NFRC:			
3	ELEVATIONS & PLAN SECTIONS	SHGC:			
4-7	DETAIL SHEET(S)	DESIGN PRESSURE:/O			

PROJECT INFORMATIONDATEDATEDATEDRAWINGS ISSUED FOR 10/10/23 FIRST SUBMITTALPOSITION NUMBER: 2 COMPTONCompton, CA Compton, CA California, 90221 United StatesBY:10/10/23 FIRST SUBMITTALNANAMALL POSITION NUMBER: 2 CONSTOMER POSITION NUMBER: 2 CONSTOMER POSITION NUMBER: 2 CONSTOMER POSITION NUMBER: 2 CALSTOMER POSITION NUMBER: 3 CALSTOMER POSITION NUMBER: 3 CALSTONER POSITION NUMBER:
PROJECT INFORMATIONAPPROVEDAPPROVALDATEImpton College Student Housing – Compton, CA Compton, CA California, 90221 United StatesBY:10/10/23 FIRST SUBNCalifornia, 90221 United StatesDATE:Indicated States
PROJECT INFORMATIONAPPROVEDAPPROVALImpton College Student Housing – Compton, CABY:11 E Artesia Boulevard, ComptonPRINTED NAME:California, 90221 United StatesDATE:
PROJECT INFORMATIONAPPROVEDAImpton College Student Housing — Compton, CABY:11 E Artesia Boulevard, ComptonPRINTED NAME:California, 90221 United StatesDATE:
PROJECT INFORMATION mpton College Student Housing — Compton, CA 11 E Artesia Boulevard, Compton California, 90221 United States
DWG. # DRAWN BY NDG
SCALE N.T.S. QUOTE 572867

DETAILS ON PAGE 2 ARE NOT TO SCALE (SEE OWNER'S MANUAL FOR MORE DETAILS)

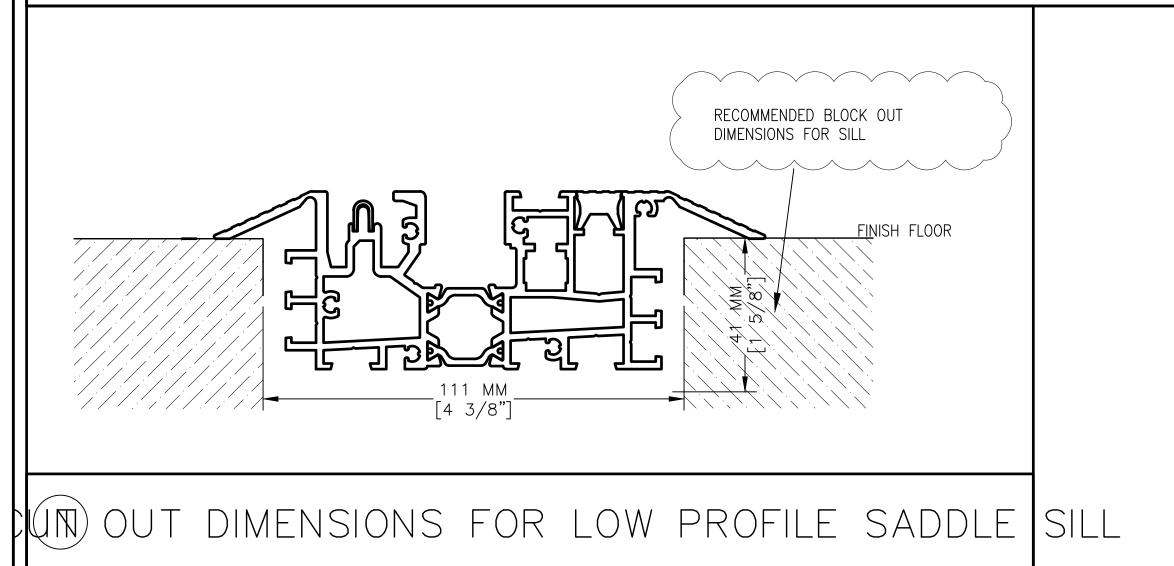

3/8" WEEP HOLES ABOUT 10" FROM EACH END AND AT ABOUT EVERY

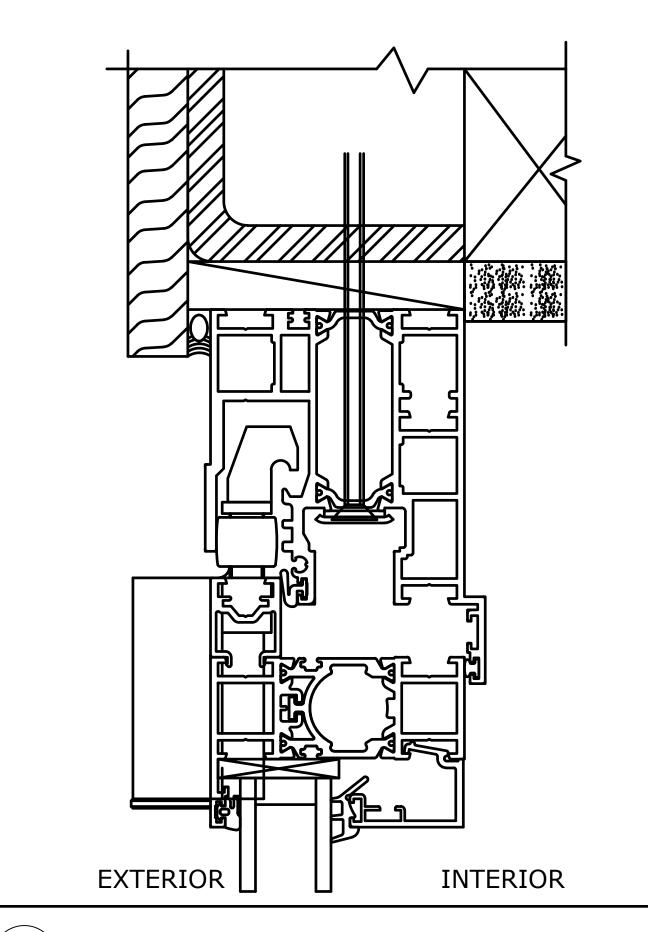
LENGTH OF THE SILL. MOVE SLOT LOCATIONS AS NEEDED SO THEY ARE STAGGERED AT LEAST 8" AWAY FROM THE WEEP HOLES IN THE INNER

CHANNEL.

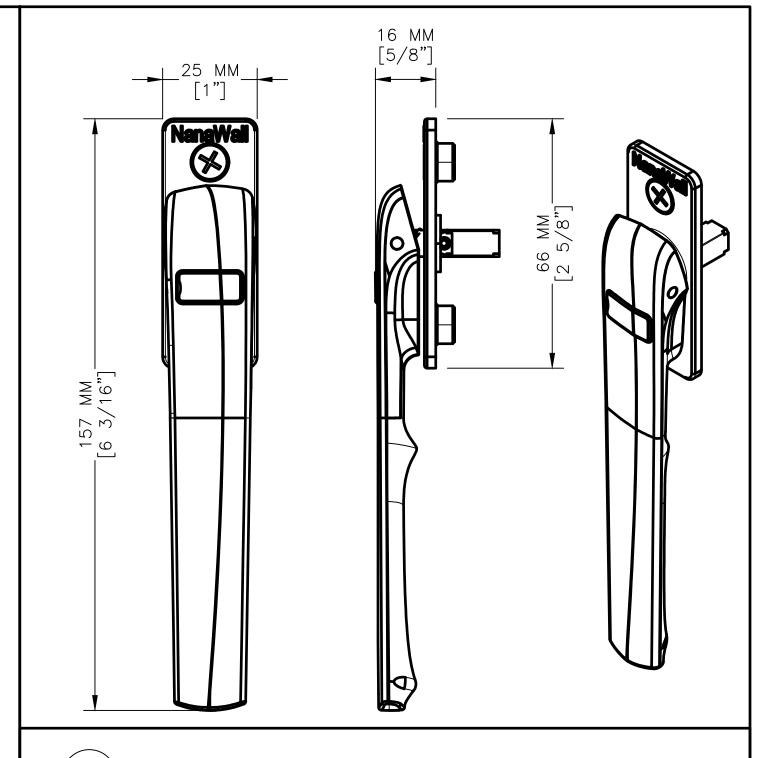
MEETING POINT OF PANELS ACROSS THE

WEEP HOLES BY OTHERS NECESSARY FOR WATER RATING AS LAB TESTED

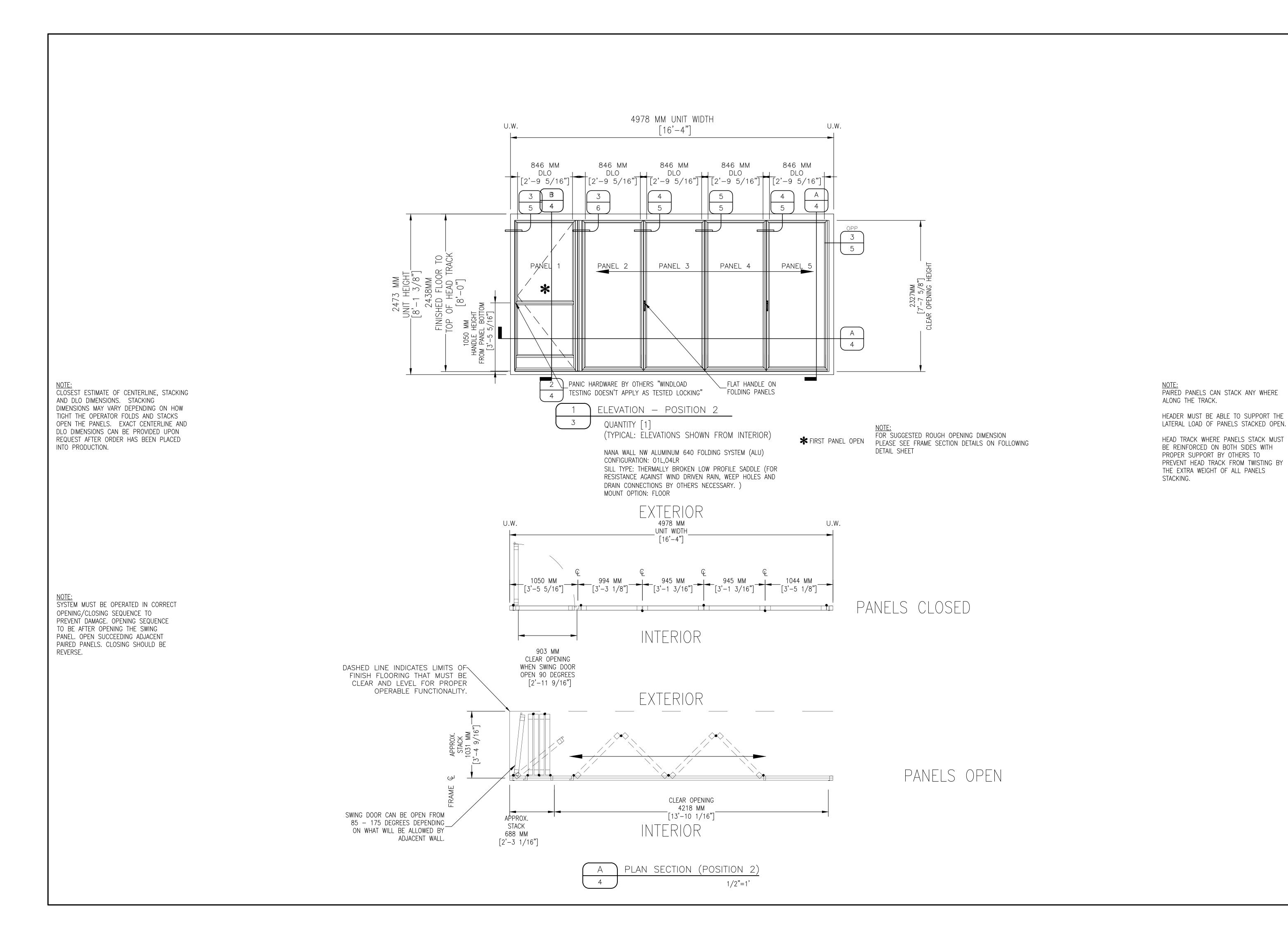



ABOUT THE CENTER OF

EACH PANEL ACROSS


THE LENGTH OF THE

SUGGESTED INSTALLATION DETAIL NW ALUMINUM 640 LOW PROFILE SADDLE SILL OUTWARD OPENING



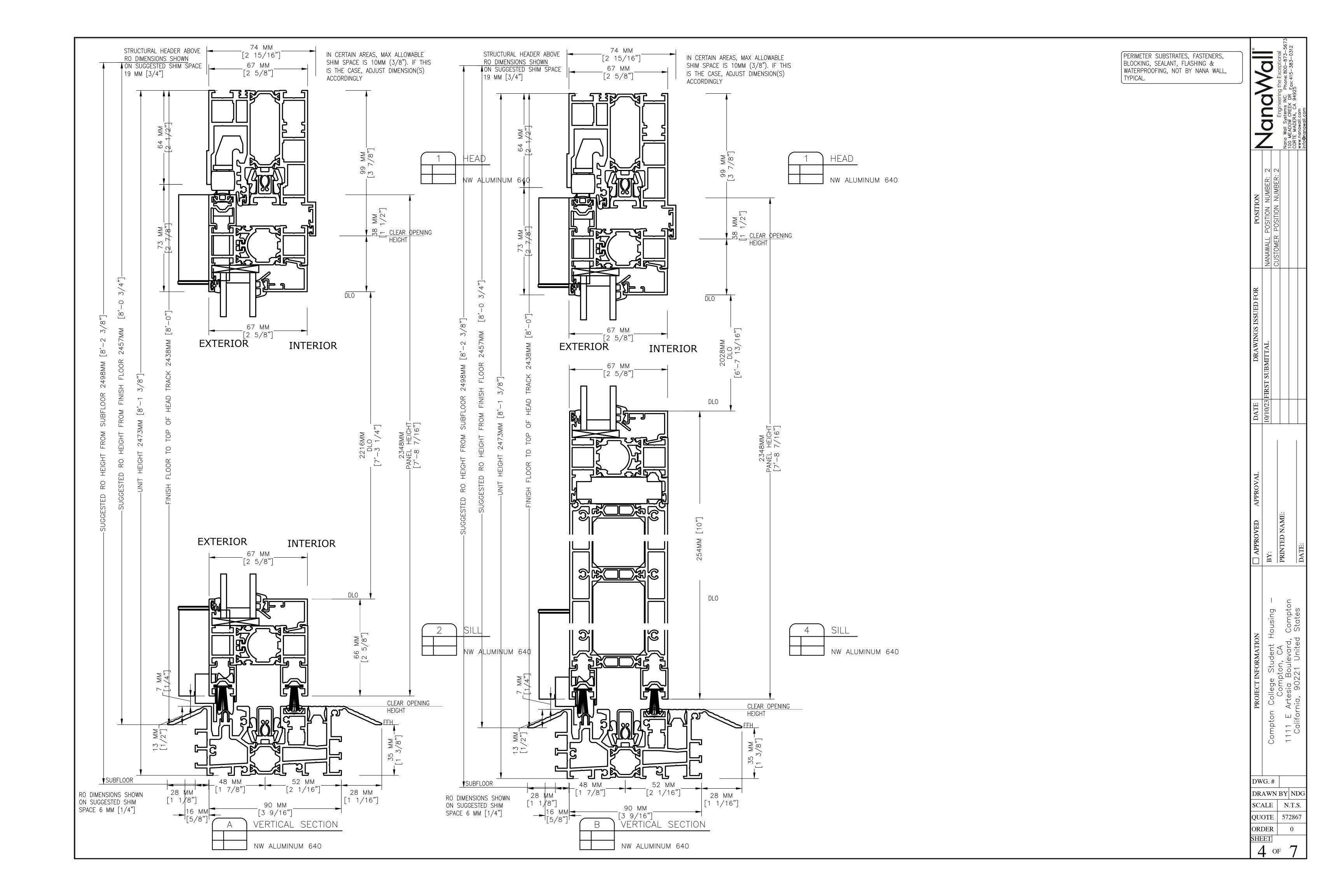
(1) FLAT HANDLE IN STAINLESS STEEL

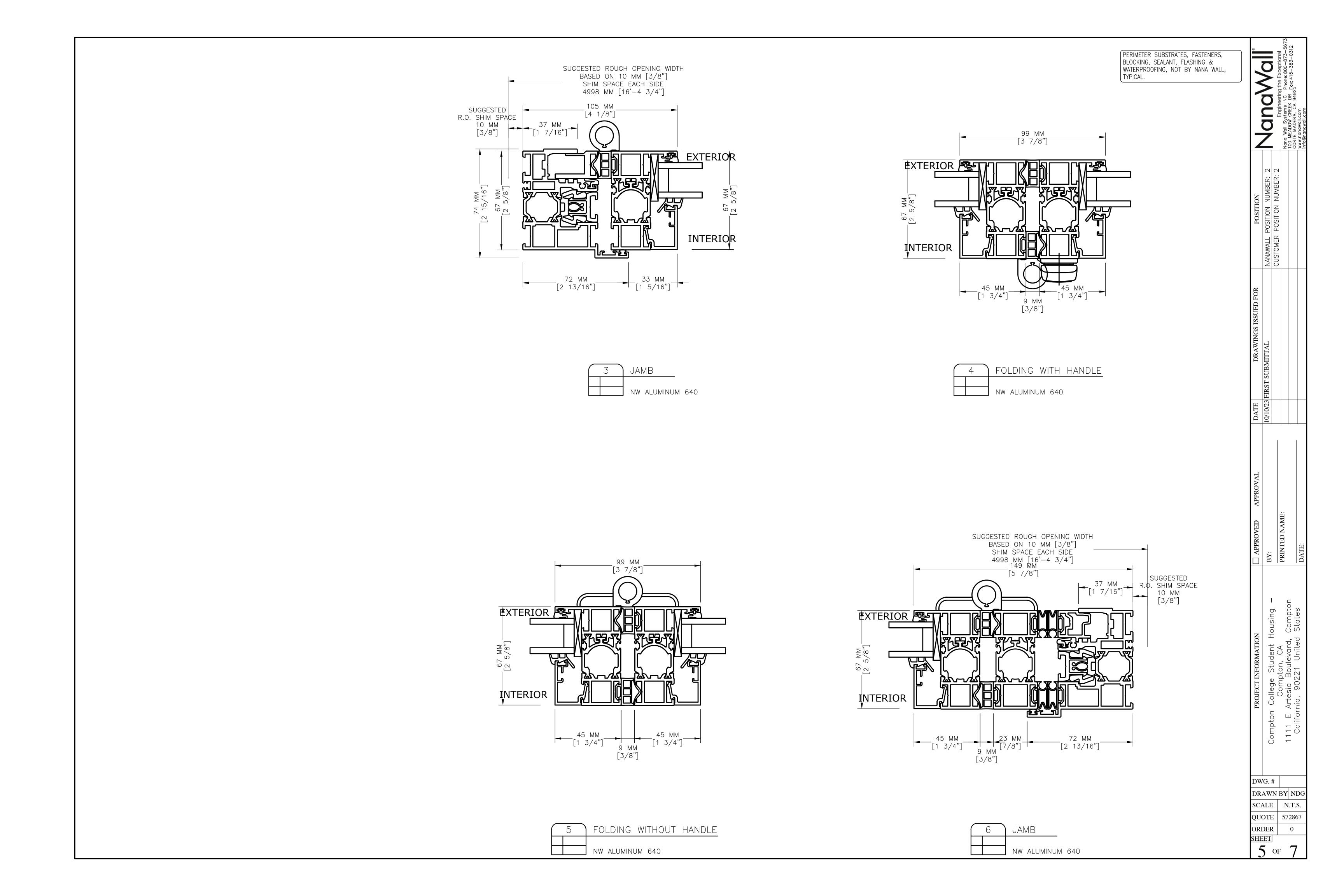
DATE 10/10/23

Vana/

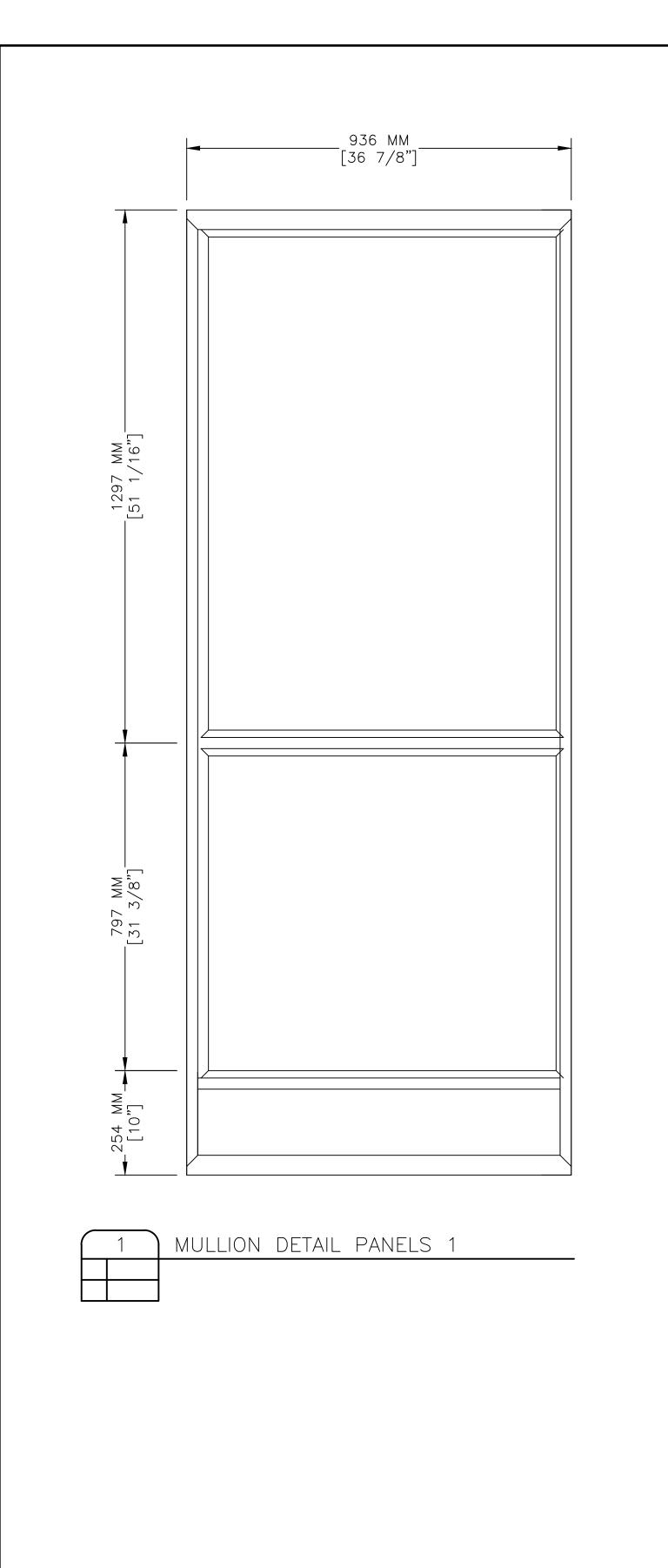
VanaWall

DWG.#

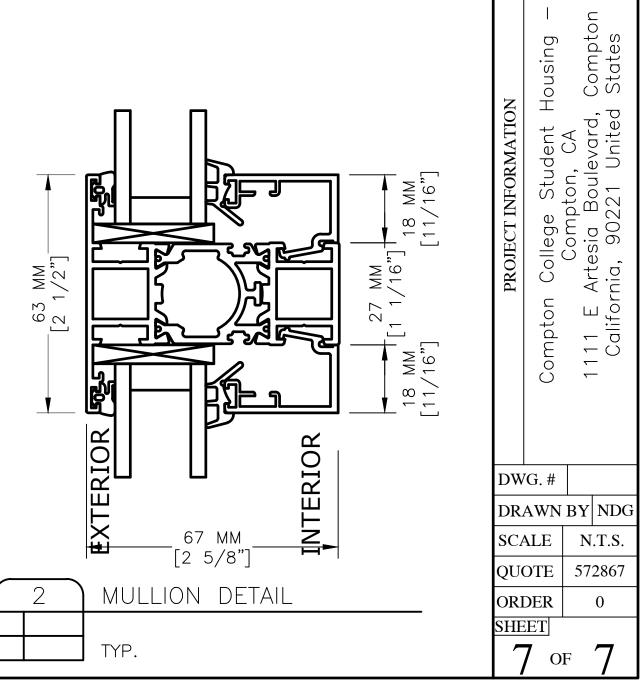

ORDER


SHEET

DRAWN BY NDG


SCALE | N.T.S.

QUOTE | 572867



PERIMETER SUBSTRATES, FASTENERS, BLOCKING, SEALANT, FLASHING & WATERPROOFING, NOT BY NANA WALL, TYPICAL. NanaWall _219 MM_ [8 5/8"] EXTERIOR STATE 67 MM [2 5/8"] __ 100 MM __ [3 15/16"] __ 58 MM _ [2 5/16"] ___45 MM __[1 3/4"] 7 MM [1/4"] 9 MM [3/8"] DWG.# DRAWN BY NDG SCALE N.T.S. QUOTE | 572867 SWING PANEL LEFT MEET FOLDING PANEL RIGHT ORDER SHEET OF NW ALUMINUM 640

PERIMETER SUBSTRATES, FASTENERS, BLOCKING, SEALANT, FLASHING & WATERPROOFING, NOT BY NANA WALL, TYPICAL.

Sequencial Exceptional

		EXTERIOR FESTIVITY FESTIVITY FOR THE STATE OF THE STATE O		67 MM 2 5/8"		INTERIOR [27 MM	18 MM [1 1/16"]	
$\overline{2}$	2	MU	JLLIC	N DE	TAIL				0
		TYF)						SI
			•						

NANA WALL SYSTEMS, INC./SOLARLUX GMBH TEST REPORT

SCOPE OF WORK

AIR AND WATER STRUCTURAL PERFORMANCE TESTING ON: SERIES NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) FOLDING DOOR

REPORT NUMBER

K5339.02-301-47 R0

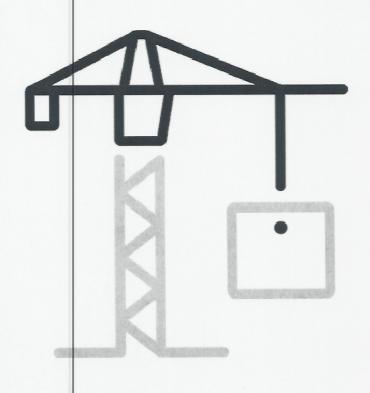
TEST DATES

03/09/20 - 03/20/20

ISSUE DATE

01/04/21

RECORD RETENTION END DATE


03/20/25

PAGES

29

DOCUMENT CONTROL NUMBER

RT-R-AMER-Test-2804 (04/17/18) © 2017 INTERTEK

REPORT ISSUED TO

NANA WALL SYSTEMS, INC. 100 Meadowcreek Drive Suite 250 Corte Madera, California 94925

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by Nana Wall Systems, Inc. to perform testing in accordance with AAMA/WDMA/CSA 101/I.S.2/A440 on their Series SL64, Type: Folding Door. Results obtained are tested values and were method(s). Testing was conducted at the Nana Wall Systems, Inc. / Solarlux GmbH test facility in Melles, Germany. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

SECTION 2

SUMMARY OF TEST RESULTS

Product Type: Folding Door

Series/Model: NW Aluminum 640 (also known as SL64 or Ecoline) Inswing Saddle Sill & NW

Aluminum 640 (also known as SL64 or Ecoline) Outswing Hybrid Sill

Test Specimen: Unit 1 & 2

For INTERTEK B&C:

RC:TW:ms

COMPLETED BY:	Ricardo Cortez	REVIEWED BY:	Tyler Westerling P.E.
TITLE:	Technician	TITLE:	Senior Project Engineer
SIGNATURE:	Rik T. C.5 Digitally Signed by: Ricardo Cortez	SIGNATURE:	Digitally Signed by: Tyler Westerling
DATE:	01/04/21	DATE:	01/04/21

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 04/17/18 Page 2 of 29 RT-R-AMER-Test-2804

SECTION 3

SUMMARY OF TEST RESULTS

Product Type: Folding Door

Series/Model: NW Aluminum 640 (also known as SL64 or Ecoline) Inswing Saddle Sill

Test Specimen: Unit 1

TITLE	RESULTS
AAMA/WDMA/CSA 101/I.S.2/A440-17	Class CW-PG25-FLD 4000 x 2600
AAMA/WDMA/CSA 101/I.S.2/A440-17	Class LC-PG35-FLD 4000 x 2600
Air (open weeps inner channel) positive 75 / 300 Pa	0.12 / 0.30 cfm/ft ²
Air (open weeps inner channel) negative 75 / 300 Pa	0.12 / 0.28 cfm/ft ²
Air (closed weeps inner channel) positive 75 / 300 Pa	0.10 / 0.26 cfm/ft ²
Air (closed weeps inner channel) negative 75 / 300 Pa	0.09 / 0.23 cfm/ft ²
Water open weeps inner channel	260 Pa
Water closed weeps inner channel	100 Pa
L/175 positive	1230 Pa / 25.7 psf
L/175 negative	1370 Pa / 28.6 psf
TP positive	3600 Pa / 75.2 psf
TP negative	3600 Pa / 75.2 psf
Permanent deflection	None
Swing Door Cycling Testing	1000000 cycles

Product Type: Folding Door

Series/Model: NW Aluminum 640 (also known as SL64 or Ecoline) Outswing Hybrid Sill

Test Specimen: Unit 2

TITLE	RESULTS
AAMA/WDMA/CSA 101/I.S.2/A440-17	Class CW-PG25-FLD 4000 x 2600
AAMA/WDMA/CSA 101/I.S.2/A440-17	Class LC-PG50-FLD 4000 x 2600
Air (all weeps options) positive 75 / 300 Pa	0.03 / 0.07 cfm/ft ²
Air (all weeps options) negative 75 / 300 Pa	0.03 / 0.07 cfm/ft ²
Water no weeps	100 Pa
Water with standard weeps	450 Pa
Water with improved weep system	750 Pa
L/175 positive	1230 Pa / 25.7 psf
L/175 negative	1280 Pa / 26.7 psf
TP positive	3960 Pa / 82.7 psf
TP negative	3600 Pa / 75.2 psf
Permanent deflection	None
Swing Door Cycling Testing	1000000 cycles

Version: 04/17/18 Page 3 of 29 RT-R-AMER-Test-2804

SECTION 4

TEST SPECIFICATION(S)/METHOD(S)

The specimens were evaluated in accordance with the following:

AAMA/WDMA/CSA 101/I.S.2/A440-17- North American Fenestration Standard/Specification for Windows, Doors, and Skylights

The following test methods were used during testing:

AAMA 205-15, In-Plant Testing Guidelines for Manufacturers and Independent Laboratories

ASTM E2068-00(2016), Standard Test Method for Determination of Operating Force of Sliding Windows and Doors

ASTM E283-04(2012), Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E331-00(2016), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E547-00(2016), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Cyclic Static Air Pressure Difference

ASTM E330/E330M-14, Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E987-88(2017), Standard Test Methods for Deglazing Force of Fenestration Products

AAMA 1304-02, Voluntary Specification for Forced Entry Resistance of Side-Hinged Door Systems

AAMA 920-11, Specification for Operating Cycle Performance of Side-Hinged Exterior Door Systems

Version: 04/17/18 Page 4 of 29 RT-R-AMER-Test-2804

SECTION 5

MATERIAL SOURCE/INSTALLATION

Test specimens were provided by the client. Representative samples of the test specimen(s) will be retained by Intertek B&C for a minimum of five years from the test completion date.

The specimen was installed into a wood buck. The rough opening allowed for a 1/2" shim space and the exterior perimeter of the specimen was sealed to the test buck. Installation of the tested product was performed by the client.

Abbreviations: DRIVE - (P/S/H) Phillips/Square-drive/Hex

HEAD - (P/F/T/W) Pan/Flat/Truss/Washer

Unless otherwise noted the following descriptions apply to all specimens.

ANCHOR DESCRIPTION	LOCATION	SPACING
#14 x 4" FH with steel backplate spanning thermal break	Head and Sill	Two located at each panel meeting locations and two at each jamb (ten total)
#14 x 4" FH with steel backplate spanning thermal break	Jambs	Two at each jamb end and two evenly spaced on jamb (six total)

SECTION 6

EQUIPMENT

Calibration of test equipment was performed by Intertek B&C in accordance with AAMA 205-15.

SECTION 7

LIST OF OFFICIAL OBSERVERS

COMPANY
Solarlux
Solarlux
Nana Wall Systems, Inc.
Nana Wall Systems, Inc.
Intertek B&C

SECTION 8

TEST SPECIMEN DESCRIPTION

Product Type: Folding Door

Series/Models: NW Aluminum 640 (also known as SL64 or Ecoline)

Test Specimen: Unit 1 – NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) Inswing Folding

Panel System with Low Profile Saddle Sill

OVERALL AREA:	WIDTH		HEIGHT	
10.40 m ² (112.0 ft ²)	Millimeters	Inches	Millimeters	Inches
Overall size	4000	157-1/2	2600	102-3/8
Locking Swing Panel	1042.6	41-1/16	2460	96-7/8
Keeper Folding Panel	987	38-7/8	2460	96-7/8
Folding Panel	957	37-11/16	2460	96-7/8
Jamb Locking Panel	1012.9	39-7/8	2460	96-7/8

Test Specimen: Unit 2 – NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) Outswing Folding Panel System with Hybrid Sill

OVERALL AREA:	WIDTH	的数据集集 3条件	HEIGHT	
10.40 m ² (112.0 ft ²)	Millimeters	Inches	Millimeters	Inches
Overall size	4000	157-1/2	2600	102-3/8
Locking Swing Panel	1042.6	41-1/16	2472	97-5/16
Keeper Folding Panel	987	38-7/8	2472	97-5/16
Folding Panel	957	37-11/16	2472	97-5/16
Jamb Locking Panel	1012.9	39-7/8	2472	97-5/16

Unless otherwise noted the following descriptions apply to all specimens.

Frame Construction:

rame construction	11.	
MEMBER	MATERIAL	DESCRIPTION
Head and Jambs	Thermally Broken Aluminum	Thermally broken with two polyamide members.
Sill	Thermally Broken Aluminum	Thermally broken with two polyamide members.
and the second s	JOINERY TYPE	DETAIL
All Corners	Mitered	Two corner keys were employed at each corner and sealed.
MATERIAL STATE OF THE STATE OF		

Panel Construction:

ranei construction.			
MEMBER	MATERIAL	DESCRIPTION	DN
Top Rail, Bottom Rail and Each Stile	Thermally Broken Aluminum	Thermally b	proken with two polyamide members.
Lock Stile Extension	Aluminum		
THE OWNER OF WARRY CONTROL OF THE PROPERTY OF	JOINERY TYPE	DETAIL	
Top Rail, Bottom Rail and Each Stile	Finger Joint	Two corne	r keys were employed at each corner.
Supplementation of the control of th			

Reinforcement: No reinforcement was utilized.

Weatherstripping: See drawings for weatherstripping details and locations.

Glazing: No conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s) can be made.

GLASS TYPE	INTER	RIOR LITE	EXTERI	OR LITE	GLA	ZING METH	OD
28mm IG	6mm		6mm		Inter	rior glazed v	vith aluminum glass stops
LOCATION		QUANTITY		DAYLIG		PENING	GLASS BITE
All Panels		4		800 x 2	300		16mm
Orainage: H	ybrid Sil	I					
METHOD	SIZE			QUAN	TITY	LOCATION	V
Slot	30mm wide by 5mm high		4		Centred under each panel on sill fa-		
Slot	30mm wide by 5mm high		4		Centred under each panel through leg into hollow		
Hole 6mm diameter		1		Lowest point of sill face to allow drainage of exterior cavity			

METHOD	SIZE	QUANTITY	LOCATION
Hole	10mm	5	Through sill face into interior channel
Hole	8 mm	4	Through middle track
Hole	8 mm	4	Through interior track

Hardware: See drawings for weatherstripping details and locations.

Screen Construction: No screen was utilized.

Total Quality. Assured.

2524 E. Jensen Ave Fresno, California 93706 Telephone: 559-233-8705 Facsimile: 717-764-4129 www.intertek.com/building

Test Specimen: Unit 1 – NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) Inswing Folding Panel System with Low Profile Saddle Sill

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Air Leakage, With All Drainage			
Exfiltration per ASTM E283	0.6 L/s/m ²	1.5 L/s/m ²	
at 75 Pa (1.57 psf)	(0.12 cfm/ft ²)	(0.3 cfm/ft ²) max.	1, 2
Air Leakage, With All Drainage			
Infiltration per ASTM E283	0.1.5 L/s/m ²	1.5 L/s/m ²	
at 300 Pa (6.24 psf)	(0.30 cfm/ft ²)	(0.3 cfm/ft ²) max.	1, 2
Air Leakage, With All Drainage			
Exfiltration per ASTM E283	1.4 L/s/m ²	1.5 L/s/m ²	
at 300 Pa (6.24 psf)	(0.28 cfm/ft ²)	(0.3 cfm/ft ²) max.	1, 2
Water Penetration, No Drainage			
Interior channel	Pass		
per ASTM E547 and ASTM E331	After testing all water		
at 100 Pa (2.1 psf)	drained to exterior	No leakage	
Water Penetration, With Drainage	Pass		
per ASTM E547 and ASTM E331	After testing all water		
at 260 Pa (5.43 psf)	drained to exterior	No leakage	
Uniform Load Deflection, L/175			
Commercial Class			
per ASTM E330			
per ASTIVI 2330			
Folding stile			
+1230 Pa (+25.7 psf)	12.0 mm (0.49")	13.5 mm (0.53") max.	
-1370 Pa (-28.6 psf)	13.0 mm (0.51")	13.5 mm (0.53") max.	4,5,6
Uniform Load Structural,			
per ASTM E330			
Folding stile	Permanent Set	10.4	
+3600 Pa (+75.2psf)	0.2 mm (0.01")	10.4 mm (0.41") max.	1 = 6
-3600 Pa (-75.2 psf)	0.3 mm (0.01")	10.4 mm (0.41") max.	4,5,6
Thermoplastic Corner Weld	Not Applicable	Not Applicable	
Forced Entry Resistance,			
per AAMA 1304,			
1330 N (300 lbf) point load	Pass	No entry	
Deglazing,			
per ASTM E987			
Operating direction,			
320 N (70 lbf)	Pass	Meets as stated	
Remaining direction,			
230 N (50 lbf)	Pass	Meets as stated	
Operation/Cycling Performance,			
per AAMA 920			
1000000 cycles	Pass	Meets as stated	

The temperature during testing was 21°C. The results are tabulated as follows:

Test Specimen: Unit 2 – NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) Outswing Folding Panel System with Hybrid Sill

Force to Latch 80.1 N (18 lbf)	Report only	
	report only	
00:211 (20:01)		
Farrage Tagger		
Force to Engage	Penart only	
	Report only	
· · · · · · · · · · · · · · · · · · ·	Report only	
Close 3.9 N (1 lbf)		
Panel Sliding		
(Initiate Motion)		
Open 20 N (4 lbf)	Report only	
Close 15 N (3 lbf)		
Panel Sliding		
(Maintain Motion)		
Open 3 N (1 lbf)	Report only	
Close 4 N (1 lbf)		
0.3 L/s/m ²	1.5 L/s/m ²	
(0.03 cfm/ft ²)	(0.3 cfm/ft ²) max.	1, 2
0.3 L/s/m ²	1.5 L/s/m ²	
(0.03 cfm/ft ²)	(0.3 cfm/ft ²) max.	1, 2
0.7 L/s/m ²	1.5 L/s/m ²	
	(0.3 cfm/ft ²) max.	1, 2
0.7 L/s/m ²	1.5 L/s/m ²	
	(0.3 cfm/ft ²) max.	1, 2
Pass		
	er	
	(Initiate Motion) Open 20 N (4 lbf) Close 15 N (3 lbf) Panel Sliding (Maintain Motion) Open 3 N (1 lbf) Close 4 N (1 lbf) 0.3 L/s/m² (0.03 cfm/ft²) 0.7 L/s/m² (0.07 cfm/ft²) 0.7 L/s/m² (0.07 cfm/ft²)	Hinge door Swingir Egress Open 2.8 N (1 lbf) Close 3.9 N (1 lbf) Close 3.9 N (1 lbf) Report only Close 15 N (3 lbf) Panel Sliding (Maintain Motion) Open 3 N (1 lbf) Close 4 N (1 lbf) C

Test Specimen: Unit 2 – NW ALUMINUM 640 (ALSO KNOWN AS SL64 OR ECOLINE) Outswing Folding Panel System with Hybrid Sill

TITLE OF TEST	RESULTS	ALLOWED	NOTE
Water Penetration, With All			
Drainage	Pass		
per ASTM E547 and ASTM E331	After testing all water		
at 450 Pa (9.4 psf)	drained to exterior	No leakage	
Water Penetration, With All			
Drainage and panel ventilation	Pass		
per ASTM E547 and ASTM E331	After testing all water		2
at 750 Pa (15.6 psf)	drained to exterior	No leakage	3
Uniform Load Deflection, L/175			
Commercial Class			
per ASTM E330			
Folding stile	(0.50)	12 5 (0 52")	
+1230 Pa (+25.7 psf)	13.3 mm (0.52")	13.5 mm (0.53") max.	4,5, 6
-1280 Pa (-26.7 psf)	12.9 mm (0.51")	13.5 mm (0.53") max.	4,5,0
Uniform Load Structural,			
per ASTM E330			
Folding stile	permanent Set		
+3960 Pa (+82.7 psf)	0.2 mm (0.01")	10.4 mm (0.41") max.	
-3600 Pa (-75.2 psf)	0.3 mm (0.01")	10.4 mm (0.41") max.	4,5,6
Thermoplastic Corner Weld	Not Applicable	Not Applicable	
Forced Entry Resistance,			
per AAMA 1304,			
1330 N (300 lbf) point load	Pass	No entry	
Deglazing,			
per ASTM E987			
Operating direction,			
320 N (70 lbf)	Pass	Meets as stated	
Remaining direction,		NA	
230 N (50 lbf)	Pass	Meets as stated	
Operation/Cycling Performance,			
per AAMA 920			
1000000 cycles	Pass	Meets as stated	

Version: 04/17/18 Page 11 of 29 RT-R-AMER-Test-2804

Note 1: The tested specimen meets (or exceeds) the performance levels specified in AAMA/WDMA/CSA 101/I.S.2/A440 for air leakage resistance.

Note 2: Test Date 03/09/20 Time: 10:00 AM (Air Note Only)

Note 3: Weather-stripping was removed at head with 300mm of weather stripping left at each panel seam

Note 4: The deflections reported are not limited by AAMA/WDMA/CSA 101/I.S.2/A440 for this product designation. The deflection data is recorded in this report for special code compliance and information only.

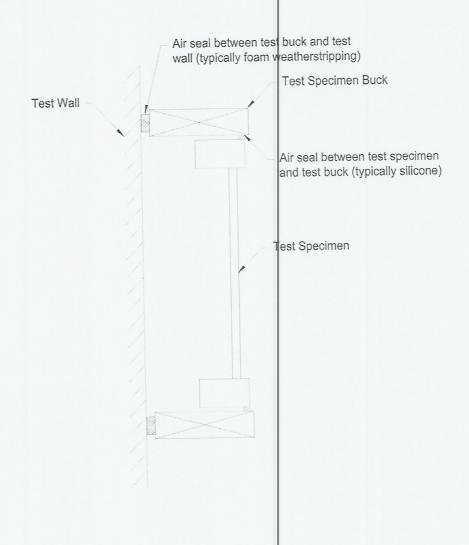
Note 5: Loads were held for 10 seconds.

Note 6: Tape and film were used to seal against air leakage during structural testing. In our opinion, the tape and film did not influence the results of the test.

SECTION 10

ALTERATIONS

No alterations were required.


Version: 04/17/18 Page 12 of 29 RT-R-AMER-Test-2804

SECTION 11

LOCATION OF AIR SEAL

The air seal between the test specimen and the test wall is detailed below. The seal is made of foam weatherstripping and is attached to the edge of the test specimen buck. The test specimen buck is placed against the test wall and clamped in place, compressing the weatherstripping and creating a seal.

Total Quality. Assured.

SECTION 12

CONCLUSION

2524 E. Jensen Ave Fresno, California 93706 Telephone: 559-233-8705 Facsimile: 717-764-4129 www.intertek.com/building

The specimens tested successfully met the performance requirements for the following ratings:

TEST SPECIMENS	TITLE	SUMMARY OF RESULTS
		Class CW-PG25-FLD 4000 x 2600
1	101/I.S.2/A440-17	Class LC-PG35-FLD 4000 x 2600
2	101/I.S.2/A440-17	Class CW-PG25-FLD 4000 x 2600
		Class LC-PG50-FLD 4000 x 2600

6.4.9 Folding door assembly qualification

6.4.9.1 General

Use Figure 6.4 to determine what test configurations are needed to qualify the appropriate frame and panel designs. Folding door types are as follows:

- Type A folding panel(s) only closing into a jamb frame
- Type B with one single active panel hinged to jamb frame
- Type C with one single active panel hinged to another panel
- Type D with two or more folding panels closing into two pr more opposing folding panels
- Type E with one single active panel hinged to jamb frame and one single active panel hinged to another panel.
- See Figure 6.4 for additional clarification (Figure 6.4 illustrates typical configurations and shall not be regarded as all-inclusive).

Figure 6.4 Folding door assembly qualification (See Clauses 6.4.9.1, 6.4.9.2, and 12.3.6.)

			Test configuration				
	TypeA 2L/2R	Type 8 21-18/18-2L	Type C 3L/3R	Type D 21-2R	Type E IL-IR / IR-IL		
Panel quantity	∇	77					
l que	Qualified configurations						
Pane	If type A tested	If type B tested	If type Ctested	If type Ditested	Iftype Etested		
2	21./2R	21./28	21./2R	2L/2R	2L /2R	2L	∇
3		2L-1R / 1L-2R			21-1R/1L-2R	2118	V1
3			3L/3R		31./38	3L	
4	4./48	4L/4R	4L/4R	4L/4R	4L/4R	41.	
4	-				3LIR/IR-3L	3L-1R	
4		2L-2R	2L-2R	2L-2R	2L-2R	2L-2R	ママ
5			5L/5R		51./58	5L	
5		4L-1R / 1L-4R			41-18/11-48	41-18	VV/
5		3L-2R / 2L-3R			3L-2R / 2L-3R	3L-2R	くくく

LH configurations shown. Testing of LH configurations shall qualify RH configurations and vice versa.

For panel quantities greater than five, see Clause 6.4.9.2 d).

Chart of door configurations covered by testing a 1L-3R bi-fold door.

SECTION 13

PHOTOGRAPHS

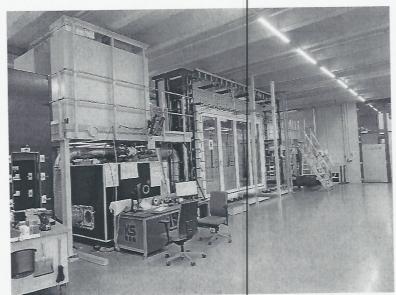


Photo No. 1 Lab Overview

SECTION 14

DRAWINGS

The test specimen drawings have been reviewed by Intertek B&C and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings.

Note: Complete drawings packet on file with Intertek B&C.

Version: 04/17/18 Page 16 of 29 RT-R-AMER-Test-2804

NANA WALL	SYSTEMS, INC.		
eries/Model:	SL64 folding panel system		
			FINISH
ART#	PART DESCRIPTION	MATERIAL	11111011
		6063-T5 aluminum thermally broken with TF1	painted/anodized
-310-01	inswing panel profile	6063-T5 aluminum thermally broken with TF2	painted/anodized
3-310-04	standard frame profile	6063-T5 aluminum thermally broken with TF3	anodized
-310-10	inswing low profile saddle sill	6063-T5 aluminum	anodized
-310-26	Sill insert profile	6063-T5 aluminum	painted/anodized
5-310-27	connection strip profile	6063-T5 aluminum thermally broken with TF1	painted/anodized
3-310-30	narrow connection profile	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	n/a
ΓF1	Technoform thermal strut		n/a
TF2	Technoform thermal strut	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	n/a
F3	Technoform thermal strut	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	painted/anodized
5-300-01	adjustable jamb profile	6063-T5 aluminum	painted/anodized
5-300-04	extention profile	6063-T5 aluminum	painted/anodized
5-300-08	stop bar profile	6063-T5 aluminum	painted/anodized
5-80-71	glazing bead 30 mm wide, glass thickness 20-24 mm	6063-T5 aluminum	n/a
5-0-08	insert in sills	stainless steel	n/a
300-01	holding profile in sill	polyamide	n/a
25-300-02	gasket	EPDM	
25-300-07	glazing gasket outside	EPDM	n/a
25-300-08	gasket	EPDM	n/a
25-300-11	gasket	EPDM	n/a
25-300-13	brush seal	polypropylene	n/a
25-73-02	Q Ion frame gasket	Various: plastic/gasket/rubber/silicone	n/a
25-60-17	Q lón frame gasket	Various: plastic/gasket/rubber/silicone	n/a
25-00-17	gasket	EPDM	n/a
25-0-1086	glazing gasket inside 4 - 6.5 mm	EPDM	n/a
Λ	insulated glass spacer	polysobutylene pri mary sealant and polyurethane secondary sealant	n/a
15-0-1097	standard locking end cap	polyamide	n/a

arias/Madal:	SL64 folding panel system		
eries/iviodei:	5L64 folding parier system		
PART#	PART DESCRIPTION	MATERIAL	FINISH
5-310-02	outswing panel profile	6063-T5 aluminum thermally broken with TF1	painted/anodized
5-310-04	standard frame profile	6063-T5 aluminum thermally broken with TF2	painted/anodized
5-310-09	outswing Hybrid sill	6063-T5 aluminum thermally broken with TF3	anodized
5-310-26	Sill insert profile	6063-T5 aluminum	anodized
5-310-27	connection strip profile	6063-T5 aluminum	painted/anodized
5-310-27	narrow connection profile	6063-T5 aluminum thermally broken with TF1	painted/anodized
F1	Technoform thermal strut	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	n/a
rF2	Technoform thermal strut	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	n/a
F3	Technoform thermal strut	PA 6.6 GF 25 (polyamide 66 with 25% glass fiber)	n/a
5-300-01	adjustable jamb profile	6063-T5 aluminum	painted/anodized
5-300-01	extention profile	6063-T5 aluminum	painted/anodized
5-300-04	stop bar profile	6063-T5 aluminum	painted/anodized
5-80-71	glazing bead 30 mm wide, glass thickness 20-24 mm	6063-T5 aluminum	painted/anodized
5-0-08	insert in sills	stainless steel	n/a
300-01	holding profile in sill	polyamide	n/a
25-300-02	gasket	EPDM	n/a
25-300-07	glazing gasket outside	EPDM	n/a
25-300-08	gasket	EPDM	n/a
25-300-00	gasket	EPDM	n/a
25-300-11	brush seal	polypropylene	n/a
25-73-02	Q lon frame gasket	Various: plastic/gasket/rubber/silicone	n/a
25-60-17	Q Ion frame gasket	Various: plastic/gasket/rubber/silicone	n/a
25-00-17	gasket	EPDM	n/a
25-0-1084	glazing gasket inside 4 - 6.5 mm	EPDM	n/a
Δ	insulated glass spacer	polysobutylene primary sealant and polyurethane secondary sealant	n/a
15-0-1097	standard locking end cap	polyamide	n/a