The Human Body: An Orientation

An Overview of Anatomy

• **Anatomy**
 • The study of the *structure* of the human body

• **Physiology**
 • The study of body *function*

• **Branches of anatomy**
 • Gross anatomy
 • Microscopic anatomy (histology)
 • Surface anatomy

• Other branches of anatomy
 • Developmental anatomy
 • Embryology
 • Pathological anatomy (pathology)
 • Radiographic anatomy
 • Functional morphology

• **Anatomical terminology**
 • Based on ancient Greek or Latin
 • Provides standard nomenclature worldwide

The Hierarchy of Structural Organization

• **Chemical level**—atoms form molecules

• **Cellular level**—cells and their functional subunits

• **Tissue level**—a group of cells performing a common function

• **Organ level**—a discrete structure made up of more than one tissue

• **Organ system**—organs working together for a common purpose

• **Organism level**—the result of all simpler levels working in unison

Systemic v. Regional Anatomy

• **Systemic**—study of anatomy by system

• **Regional**—study of anatomy by region

• Most students use a combination of regional and systemic study

Integumentary System

• Forms external body covering
• Protects deeper tissues from injury
• Synthesizes vitamin D
• Site of cutaneous receptors
 • (pain, pressure, etc.) and sweat and oil glands

Skeletal System
• Protects and supports body organs
• Provides a framework for muscles
• Blood cells formed within bones
• Stores minerals

Muscular System
• Allows manipulation of environment
• Locomotion
• Facial expression
• Maintains posture
• Produces heat

Nervous System
• Fast-acting control system
• Responds to internal and external changes

Endocrine System
• Glands secrete hormones that regulate:
 • Growth
 • Reproduction
 • Nutrient use

Cardiovascular System
• Blood vessels transport blood
 • Blood carries oxygen and carbon dioxide
 • It also carries nutrients and wastes
• Heart pumps blood through blood vessels

Lymphatic System/Immunity
• Picks up fluid leaked from blood vessels
• Disposes of debris in the lymphatic system
• Houses white blood cells (lymphocytes)
• Mounts attack against foreign substances in the body
Respiratory System
• Keeps blood supplied with oxygen
• Removes carbon dioxide
• Gas exchange occurs through walls of air sacs in the lungs

Digestive System
• Breaks down food into absorbable units
• Indigestible foodstuffs eliminated as feces

Urinary System
• Eliminates nitrogenous wastes
• Regulates water, electrolyte, and acid-base balance

Male & Female Reproductive Systems
• Overall function is to produce offspring
• Testes produce sperm and male sex hormones
• Ovaries produce eggs and female sex hormones
• Mammary glands produce milk

Scale: Length, Volume, and Weight
• Metric system provides a precise system of measurement

Gross Anatomy—An Introduction
• Anatomical position—a common visual reference point
 • Person stands erect with feet together and eyes forward
 • Palms face anteriorly with the thumbs pointed away from the body
• Directional terminology—refers to the body in anatomical position
 • Standardized terms of directions are paired terms

Gross Anatomy—An Introduction
• Directional terms
• Regional terms—names of specific body areas
 • Axial region—the main axis of the body
 • Appendicular region—the limbs

Body Planes and Sections
• Coronal (frontal) plane
 • Lies vertically and divides body into anterior and posterior parts
• Median (midsagittal) plane
 • Specific sagittal plane that lies vertically in the midline
Transverse plane
- Runs horizontally and divides body into superior and inferior parts

Characteristics Common to All Vertebrates
- Tube-within-a-tube
- Bilateral symmetry
- Dorsal hollow nerve cord
- Notochord and vertebrae
- Segmentation
- Pharyngeal pouches

Basic Human Body Plan and Structures
Shared with all Vertebrates

Body Cavities and Membranes
- Dorsal body cavity
 - Cranial cavity
 - Vertebral cavity
- Ventral body cavity
 - Thoracic cavity—divided into three parts
 - Two lateral parts each containing a lung surrounded by a pleural cavity
 - Mediastinum—contains the heart surrounded by the pericardial sac

Body Cavities and Membranes
- Ventral body cavity (continued)
 - Abdominopelvic cavity—divided into two parts
 - Abdominal cavity—contains the liver, stomach, kidneys, and other organs
 - Pelvic cavity—contains the bladder, some reproductive organs, and rectum

- Serous cavities—a slit-like space lined by a serous membrane
 - Pleura, pericardium, and peritoneum
 - Parietal serosa—outer wall of the cavity
 - Visceral serosa covers the visceral organs

Abdominal Regions and Quadrants
- Abdominal regions divide the abdomen into nine regions
- Abdominal quadrants divide the abdomen into four quadrants
 - Right upper and left upper quadrants
 - Right lower and left lower quadrants
Microscopic Anatomy

- **Microscopy**—examining small structures through a microscope
 - **Light microscopy** illuminates tissue with a beam of light (lower magnification)
 - **Electron microscopy** uses beams of electrons (higher magnification)

- Preparing human tissue for microscopy
 - Specimen is fixed (preserved) and sectioned
 - Specimen is stained to distinguish anatomical structures
 - *Acidic stain*—negatively charged dye molecules
 - *Basic stain*—positively charged dye molecules

- **Scanning electron microscopy**
 - Heavy metal salt stain—deflects electrons in the beam to different extents

- **Artifacts**
 - Minor distortions of preserved tissues
 - Not exactly like living tissues and organs

Clinical Anatomy—An Introduction to Medical Imaging Techniques

- **X ray**—electromagnetic waves of very short length
 - Best for visualizing bones and abnormal dense structures

Advanced X-Ray Techniques

- **Computed (axial) tomography** (CT or CAT)—takes successive X rays around a person's full circumference
 - Translates recorded information into a detailed picture of the body section

- **Digital subtraction angiography** (DSA) imaging provides an unobstructed view of small arteries
 - DSA is often used to identify blockages of arteries that supply the heart or brain

- **Positron emission tomography** (PET)—forms images by detecting radioactive isotopes injected into the body

- **Sonography** (ultrasound imaging)—body is probed with pulses of
high-frequency sound waves that echo off the body's tissues
- Imaging technique used to determine the age of a developing fetus

- **Magnetic resonance imaging** (MRI)—produces high-quality images of soft tissues
 - Distinguishes body tissues based on relative water content

2

Cells: The Living Units

Introduction to Cells
- Several important scientists made discoveries about cells
 - Robert Hooke
 - Matthias Schleiden and Theodor Schwann
 - Rudolf Virchow
- **Cells**—the smallest living units in our bodies
 - **Organelles**—“little organs”—carry on essential functions of cells
- Cells have three main components
 - **Plasma membrane**—the outer boundary
 - **Cytoplasm**—contains most organelles
 - **Nucleus**—controls cellular activities

Structure of a Generalized Cell

The Plasma Membrane
- Plasma membrane defines the extent of the cell
- Structure of membrane
 - Fluid mosaic model (lipid bilayer)
 - Types of membrane proteins
 - **Integral proteins**—firmly imbedded in, or attached to lipid bilayer
 - **Short chains of carbohydrates attach to integral proteins**
 - Form the glycocalyx
 - **Peripheral proteins**—attach to membrane surface
 - Support plasma membrane from the cytoplasmic side

The Plasma Membrane
- **Functions**—relate to location at the interface of cell’s exterior and interior
 - Provides barrier against substances outside cell
- Some plasma membranes act as receptors
- Determines which substances enter or leave the cell
 - *Membrane is selectively permeable*

- Membrane is *selectively permeable*

Membrane Transport
- Simple diffusion—tendency of molecules to move down their concentration gradient
- Osmosis—diffusion of water molecules across a membrane

Membrane Transport Mechanisms
- **Facilitated diffusion**—movement of molecules down their concentration gradient through an integral protein
- **Active transport**—integral proteins move molecules across the plasma membrane against their concentration gradient

Endocytosis
- **Endocytosis**
 - Mechanism by which particles enter cells
 - *Phagocytosis*—"cell eating"
 - *Pinocytosis*—"cell drinking"

Receptor-mediated Endocytosis
- **Receptor-mediated endocytosis**
 - Plasma proteins bind to certain molecules
 - *Invaginates and forms a coated pit*
 - Pinches off to become a *coated vesicle*
 - *NOTE: This is the method by which insulin and cholesterol enter cells!*

Three Types of Endocytosis

Exocytosis
- **Exocytosis**—a mechanism that moves substances out of the cell
 - Substance is enclosed in a vesicle
 - The vesicle migrates to the plasma membrane
 - Proteins from the vesicles (v-SNAREs) bind with membrane proteins (t-SNAREs)
 - The lipid layers from both membranes bind, and the vesicle releases
The Cytoplasm

• **Cytoplasm**—lies internal to plasma membrane
 • Consists of cytosol, organelles, and inclusions

• **Cytosol**
 • Jelly-like fluid in which other cellular elements are suspended
 • Consists of water, ions, and enzymes

Cytoplasmic Organelles

• **Ribosomes**—constructed of proteins and ribosomal RNA; not surrounded by a membrane
 • Site of protein synthesis
 • *Assembly of proteins is called translation*
 • Are the “assembly line” of the manufacturing plant

• **Endoplasmic reticulum**—“network within the cytoplasm”
 • **Rough ER**—ribosomes stud the external surfaces
 • **Smooth ER**—consists of tubules in a branching network
 • *No ribosomes are attached; therefore no protein synthesis*

• **Golgi apparatus**—a stack of three to 10 disk-shaped envelopes
 • Sorts products of rough ER and sends them to proper destination
 • Products of rough ER move through the Golgi from the convex (*cis*) to the concave (*trans*) side
 • Is the “packaging and shipping” division of the manufacturing plant

• **Lysosomes**—membrane-walled sacs containing digestive enzymes
 • Digest unwanted substances

• **Mitochondria**—generate most of the cell’s energy; most complex organelle
 • More abundant in energy-requiring cells, like muscle cells and sperm
 • “Power plant” of the cell

• **Peroxisomes**—membrane-walled sacs of oxidase enzymes
 • Enzymes neutralize free radicals and break down poisons
 • Break down long chains of fatty acids
• Are numerous in the liver and kidneys
• Are the toxic waste removal system

• **Cytoskeleton**—“cell skeleton”—an elaborate network of rods
 • Contains three types of rods:
 * **Microtubules**—cylindrical structures made of proteins
 * **Microfilaments**—filaments of contractile protein actin
 * **Intermediate filaments**—protein fibers

• **Centrosomes and centrioles**
 • **Centrosome**—a spherical structure in the cytoplasm
 * Composed of centrosome matrix and centrioles
 • **Centrioles**—paired cylindrical bodies
 * Consists of 27 short microtubules
 * Act in forming cilia
 * Necessary for karyokinesis (nuclear division)

Cytoplasmic Inclusions
• Temporary structures
 • Not present in all cell types
• May consist of pigments, crystals of protein, and food stores
 • **Lipid droplets**—found in liver cell and fat cells
 • **Glycosomes**—store sugar in the form of glycogen

The Nucleus
• The nucleus—“little nut” or “kernel”—control center of cell
 • DNA directs the cell’s activities
 • Nucleus is approximate 5µm in diameter

The Nucleus
• **Nuclear envelope**—two parallel membranes separated by fluid-filled space
• Nuclear pores penetrate the nuclear envelope
 • Pores allow large molecules to pass in and out of the nucleus

The Nucleus
• Nucleolus—“little nucleus”—in the center of the nucleus
 • Contains parts of several chromosomes
 • Site of **ribosome subunit** assembly
Chromatin and Chromosomes
- DNA double helix is composed of four subunits:
 - Thymine (T), adenine (A), cytosine (C), and guanine (G)
- DNA is packed with proteins
 - DNA plus the proteins form **chromatin**
- Each cluster of DNA and histone proteins is a **nucleosome**

Extended chromatin
- Is the active region of DNA where DNA’s genetic code is copied onto mRNA (transcription)

Condensed chromatin
- Tightly coiled nucleosomes
- Inactive form of chromatin

Chromosomes—highest level of organization of chromatin
- Contains a long molecule of DNA
 - *46 chromosomes are in a typical human cell*

The Cell Life Cycle
- The cell life cycle is the series of changes a cell goes through
 - **Interphase**
 - *G1* phase—growth 1 or Gap 1 phase
 - The first part of **interphase**
 - Cell metabolically active—growth—make proteins
 - Variable in length from hours to **YEARS**
 (egg cell)
 - **Centrioles** begin to replicate near the end of G1

 - **S** (synthetic) phase—DNA replicates itself
 - Ensures that daughter cells receive identical copies of the genetic material (chromatin extended)

 - **G2** phase—growth 2 or Gap 2
 - **Centrioles** finish copying themselves
 - Enzymes needed for cell division are synthesized in G2
 - During S (synthetic) and G2 phases, cell carries on normal activities

 - **Cell division**
 - **M** (mitotic) phase—cells divide during this stage
 - *Follows interphase (G1, S, and G2)*
Cell division involves:

- **Mitosis**—division of the nucleus during cell division
 - *Chromosomes are distributed to the two daughter nuclei*
- **Cytokinesis**—division of the cytoplasm
 - *Occurs after the nucleus divides*

The Stages of Mitosis

- **Prophase**—the first and longest stage of mitosis
 - Early prophase—chromatin threads condense into chromosomes
 - *Chromosomes are made up of two threads called chromatids (sister chromatids)*
 - *Chromatids are held together by the centromere*
 - *Centriole pairs separate from one another*
 - *The mitotic spindle forms*
 - Prophase (continued)
 - Late prophase—centrioles continue moving away from each other
 - *Nuclear membrane fragments*

- **Metaphase**—the second stage of mitosis
 - Chromosomes cluster at the middle of the cell
 - *Centromeres are aligned along the equator*

- **Anaphase**—the third and shortest stage of mitosis
 - **Centromeres** of chromosomes split

- **Telophase** begins as chromosomal movement stops
 - Chromosomes at opposite poles of the cell uncoil
 - Resume threadlike extended-chromatin form
 - A new nuclear membrane forms

- **Cytokinesis** completes the division of the cell into two daughter cells

Cellular Diversity

- Specialized functions of cells relates to:
 - Shape of cell
 - Arrangement of organelles
- Cells that *connect body parts or cover organs*
 - **Fibroblast**—makes and secretes protein component of fibers
 - **Erythrocyte**—concave shape provides surface area for uptake of the respiratory gases
• **Epithelial cell**—hexagonal shape allows maximum number of epithelial cells to pack together

• Cells that move organs and body parts
 • **Skeletal** and **smooth muscle cells**
 • Elongated and filled with actin and myosin
 • Contract forcefully

• Cells that store nutrients
 • **Fat cell**—shape is produced by large fat droplet in its cytoplasm

• Cells that fight disease
 • **Macrophage**—moves through tissue to reach infection sites

• Cells that gather information
 • **Neuron**—has long processes for receiving and transmitting messages

• Cells of reproduction
 • **Sperm** (male) – possesses long tail for swimming to the egg for fertilization

Developmental Aspects of Cells
• **Aging**—a complex process caused by a variety of factors
 • **Free radical theory**
 • Damage from byproducts of cellular metabolism
 • Radicals build up and damage essential molecules of cells
 • **Mitochondrial theory**
 • A decrease in production of energy by mitochondria weakens and ages our cells

• Aging (continued)
 • **Genetic theory** proposes that aging is programmed by genes
 • Telomeres—“end caps” on chromosomes
 • Telomerase—prevents telomeres from degrading

4 Tissues
Tissues
• **Cells** work together in functionally related groups called tissues
• **Tissue**
 • A group of closely associated cells that perform related functions and are similar in structure

Four Basic Tissue Types and Basic Functions
• **Epithelial tissue**—covering (Chapters 4 and 5)
• **Connective tissue**—support (Chapters 4, 5, 6, and 9)
• **Muscle tissue**—movement (Chapters 10 and 11)
• **Nervous tissue**—control (Chapters 12–16 and 25)

Epithelial Tissue
• Covers a body surface or lines a body cavity
• Forms parts of *most glands*
• **Functions** of epithelia
 • Protection
 • Diffusion
 • Absorption, secretion, and ion transport
 • Filtration
 • Forms slippery surfaces

Special Characteristics of Epithelia
• **Cellularity**
 • Cells separated by minimal extracellular material
• **Specialized contacts**
 • Cells joined by special junctions
• **Polarity**
 • Cell regions of the apical surface differ from the basal surface
• **Support by connective tissue**
• **Avascular but innervated**
 • Epithelia receive nutrients from underlying connective tissue
• **Regeneration**
 • Lost cells are quickly replaced by cell division

Classifications of Epithelia
• First name of tissue indicates *number of cell layers*
 • **Simple**—one layer of cells
 • **Stratified**—more than one layer of cells
• Last name of tissue describes shape of cells
 • Squamous—cells are wider than tall (plate-like)
 • Cuboidal—cells are as wide as tall, like cubes
 • Columnar—cells are taller than they are wide, like columns

Classifications of Epithelia

Simple Squamous Epithelium
• Description—single layer; flat cells with disc-shaped nuclei

Simple Squamous Epithelium
• Function
 • Passage of materials by passive diffusion and filtration
 • Secretes lubricating substances in serosae
• Location
 • Renal corpuscles
 • Alveoli of lungs
 • Lining of heart, blood, and lymphatic vessels
 • Lining of ventral body cavity (serosae)

Simple Squamous Epithelium

Simple Cuboidal Epithelium
• Description
 • Single layer of cubelike cells with large, spherical central nuclei
• Function
 • Secretion and absorption
• Location
 • Kidney tubules, secretory portions of small glands, ovary surface

Simple Cuboidal Epithelium

Simple Columnar Epithelium
• Description—single layer of column-shaped (rectangular) cells with oval nuclei
 • Some bear cilia at their apical surface
 • May contain goblet cells
• Function
 • Absorption; secretion of mucus, enzymes, and other substances
 • Ciliated type propels mucus or reproductive cells by ciliary action
Simple Columnar Epithelium

- **Location**
 - **Nonciliated form**
 - *Lines digestive tract, gallbladder, ducts of some glands*
 - **Ciliated form**
 - *Lines small bronchi, uterine tubes, and uterus*

Simple Columnar Epithelium

Pseudostratified Columnar Epithelium

- **Description**
 - All cells originate at basement membrane
 - Only tall cells reach the apical surface
 - May contain goblet cells and bear cilia
 - Nuclei lie at varying heights within cells
 - *Gives false impression of stratification*

Pseudostratified Columnar Epithelium

- **Function**—secretion of mucus; propulsion of mucus by cilia
- **Locations**
 - Nonciliated type
 - *Ducts of male reproductive tubes*
 - *Ducts of large glands*
 - Ciliated variety
 - *Lines trachea and most of upper respiratory tract*

Pseudostratified Ciliated Columnar Epithelium

Stratified Epithelia

- **Properties**
 - Contain *two or more* layers of cells
 - Regenerate from below (basal layer)
 - Major role is protection
 - Named according to shape of cells at *apical layer*

Stratified Squamous Epithelium

- **Description**
 - Many layers of cells are squamous in shape
 - Deeper layers of cells appear cuboidal or columnar
 - Thickest epithelial tissue
 - *Adapted for protection from abrasion*
Stratified Squamous Epithelium
• Two types—keratinized and non-keratinized
 • Keratinized
 • Location—epidermis
 • Contains the protective protein keratin
 • Waterproof
 • Surface cells are dead and full of keratin
 • Non-keratinized
 • Forms moist lining of body openings

Stratified Squamous Epithelium
• Function—Protects underlying tissues in areas subject to abrasion
• Location
 • Keratinized—forms epidermis
 • Nonkeratinized—forms lining of mucous membranes
 • Esophagus
 • Mouth
 • Anus
 • Vagina
 • Urethra

Stratified Squamous Epithelium

Stratified Cuboidal Epithelium
• Description—generally two layers of cube-shaped cells
• Function—protection
• Location
 • Forms ducts of
 • Mammary glands
 • Salivary glands
 • Largest sweat glands

Stratified Cuboidal Epithelium

Stratified Columnar Epithelium
• Description—several layers; basal cells usually cuboidal; superficial cells elongated
• Function—protection and secretion
• Location
 • Rare tissue type
- Found in male urethra and large ducts of some glands

Stratified Columnar Epithelium

Transitional Epithelium
- **Description**
 - Has characteristics of stratified cuboidal and stratified squamous
 - Superficial cells dome-shaped when bladder is relaxed, squamous when full
- **Function**—permits distension of urinary organs by contained urine
- **Location**—epithelium of urinary bladder, ureters, proximal urethra

Glands
- **Endocrine glands**
 - Ductless glands that secrete directly into surrounding tissue fluid
 - *Produce messenger molecules called hormones*
 - Covered in detail in chapter 17

Glands
- *Ducts* carry products of **exocrine glands** to epithelial surface
- Include the following diverse glands
 - Mucus-secreting glands
 - Sweat and oil glands
 - Salivary glands
 - Liver and pancreas

Unicellular Exocrine Glands (The Goblet Cell)
- Goblet cells produce **mucin**
 - Mucin + water → mucus
 - Protects and lubricates many internal body surfaces
 - Goblet cells are a unicellular exocrine gland

Goblet Cells

Multicellular Exocrine Glands
- Have two basic parts
 - Epithelium-walled duct
 - Secretory unit
Multicellular Exocrine Glands
• Classified by structure of duct
 • Simple
 • Compound
• Categorized by secretory unit
 • Tubular
 • Alveolar
 • Tubuloalveolar

Types of Multicellular Exocrine Glands

Lateral Surface Features—Cell Junctions
• Factors binding epithelial cells together
 • Adhesion proteins link plasma membranes of adjacent cells
 • Contours of adjacent cell membranes
 • Special cell junctions

Lateral Surface Features—Cell Junctions
• Tight junctions (zona occludens)—close off intercellular space
 • Found at apical region of most epithelial tissues types
 • Some proteins in plasma membrane of adjacent cells are fused
 • Prevent certain molecules from passing between cells of epithelial tissue

Tight Junction

Lateral Surface Features—Cell Junctions
• Adhesive belt junctions (zonula adherens)—anchoring junction
 • Transmembrane linker proteins attach to actin microfilaments of the cytoskeleton and bind adjacent cells
 • With tight junctions, these linker proteins form the tight junctional complex around apical lateral borders of epithelial tissues

Lateral Surface Features
• Desmosomes—main junctions for binding cells together
 • Scattered along abutting sides of adjacent cells
 • Cytoplasmic side of each plasma membrane has a plaque
 • Plaques are joined by linker proteins

Lateral Surface Features
• Desmosomes (continued)
• Intermediate filaments extend across the cytoplasm and anchor at desmosomes on opposite side of the cell
 • Are common in cardiac muscle and epithelial tissue

Desmosome

Lateral Surface Features—Cell Junctions
• **Gap junctions**—passageway between two adjacent cells
 • *These let small molecules move directly between neighboring cells*
 • Cells are connected by hollow cylinders of protein
 • Function in intercellular communication

Gap Junction

Basal Feature: The Basal Lamina
• Noncellular supporting sheet between the ET and the CT deep to it
 • Consists of proteins secreted by ET cells

Basal Feature: The Basal Lamina
• Functions
 • Acts as a *selective filter*, determining which molecules from capillaries enter the epithelium
 • Acts as *scaffolding* along which regenerating ET cells can migrate
 • **Basal lamina** and **reticular layers** of the underlying CT deep to it form *the basement membrane*

Epithelial Surface Features
• **Apical surface features**
 • **Microvilli**—fingerlike extensions of plasma membrane
 • *Abundant in ET of small intestine and kidney*
 • *Maximize surface area across which small molecules enter or leave*
 • *Act as stiff knobs that resist abrasion*

Epithelial Surface Features
• **Apical surface features**
 • **Cilia**—whiplike, highly motile extensions of apical surface membranes
 • *The apical surface contains a core of nine pairs of microtubules encircling one middle pair*
• **Axoneme**—a set of microtubules
 • Each pair of microtubules are arranged in a doublet
 • **Microtubules in cilia**—*arranged similarly to cytoplasmic organelles called* centrioles
 • **Movement of cilia**—*in coordinated waves*

A Cilium

Classes of Connective Tissue
• *Most diverse and abundant tissue*
• Main classes
 • **Connective tissue proper**
 • **Cartilage**
 • **Bone tissue**
 • **Blood**
• Cells separated by a *large amount of extracellular matrix*
• Extracellular matrix is composed of ground substance and fibers
• Common embryonic origin—**mesenchyme**

Classes of Connective Tissue

Structural Elements of Connective Tissue
• Connective tissues differ in structural properties
 • Differences in types of cells
 • Differences in composition of extracellular matrix
• However, connective tissues all share structural elements
• **Loose areolar connective tissue**
 • Will illustrate connective tissue features

Structural Elements of Connective Tissue
• Cells—primary cell type of connective tissue produces matrix
 • **Fibroblasts**
 • *Make protein subunits*
 • *Secrete molecules that form the ground substance*
 • **Chondroblasts**—secrete matrix in cartilage
 • **Osteoblasts**—secrete matrix in bone

Structural Elements of Connective Tissue
• Cells (continued)
 • Blood cells—an exception
 • *Do not produce matrix*
 • Areolar connective tissue contains
• Fat cells
• White blood cells
• Mast cells

Structural Elements of Connective Tissue

Structural Elements of Connective Tissue
• Fibers—function in support
 • Collagen fibers—strongest; resist tension
 • Reticular fibers—bundles of special type of collagen
 • Cover and support structures
 • Elastic fibers—contain elastin
 • Recoil after stretching

Structural Elements of Connective Tissue
• Ground substance
 • Is produced by primary cell type of the tissue
 • Is usually gel-like
 • Cushions and protects body structures
 • Holds tissue fluid
 • Blood is an exception
 • Plasma is not produced by blood cells

Connective Tissue Proper
• Has two subclasses
 • Loose connective tissue
 • Areolar, adipose, and reticular
 • Dense connective tissue
 • Dense irregular, dense regular, and elastic

Classes of Connective Tissue

Areolar Connective Tissue—A Model Connective Tissue
• Areolar connective tissue
 • Underlies epithelial tissue
 • Surrounds small nerves and blood vessels
 • Has structures and functions shared by other CT
 • Borders all other tissues in the body

Major Functions of Connective Tissue
• Structure of areolar connective tissue reflects its functions
• Support and binding of other tissues
• Holding body fluids (interstitial fluid → lymph)
• Defending body against infection
• Storing nutrients as fat

Areolar Connective Tissue
• Fibers provide support
 • Three types of protein fibers in extracellular matrix
 • Collagen fibers
 • Reticular fibers
 • Elastic fibers
 • Fibroblasts produce these fibers

Areolar Connective Tissue
• Description
 • Gel-like matrix with *all three fiber types*
 • Cells of areolar CT
 • Fibroblasts, macrophages, mast cells, and white blood cells
• Function
 • Wraps and cushions organs
 • Holds and conveys tissue fluid (interstitial fluid)
 • Important role in inflammation

Areolar Connective Tissue
• Locations
 • Widely distributed under epithelia
 • Packages organs
 • Surrounds capillaries

Areolar Connective Tissue

Areolar Connective Tissue
• **Tissue fluid** (interstitial fluid)
 • Watery fluid occupying extracellular matrix
 • Tissue fluid derives from blood
• **Ground substance**
 • Viscous, spongy part of extracellular matrix
 • Consists of sugar and protein molecules
 • *Made and secreted by fibroblasts*
Areolar Connective Tissue
• *Main battlefield in fight against infection*
• Defenders gather at infection sites
 • Macrophages
 • Plasma cells
 • Mast cells
 • White blood cells
 * Neutrophils, lymphocytes, and eosinophils

Adipose Tissue
• Description
 • Closely packed adipocytes
 • Have nucleus pushed to one side by fat droplet
 • Richly vascularized

Adipose Tissue
• Function
 • Provides reserve food fuel
 • Insulates against heat loss
 • Supports and protects organs
• Location
 • Under skin
 • Around kidneys
 • Behind eyeballs, within abdomen, and in breasts
 • Hypodermis

Adipose Tissue

Reticular Connective Tissue
• Description—network of reticular fibers in loose ground substance
• Function—forms a soft, internal skeleton
 • (stroma); supports other cell types
• Location—lymphoid organs
 • Lymph nodes, bone marrow, and spleen

Reticular Connective Tissue

Dense Connective Tissue
• Dense irregular connective tissue
• Dense regular connective tissue
• Elastic connective tissue

Dense Irregular Connective Tissue
• Description
 • Primarily *irregularly* arranged collagen fibers
 • Some elastic fibers and fibroblasts

Dense Irregular Connective Tissue
• Function
 • Withstands tension
 • Provides structural strength
• Location
 • Dermis of skin
 • Submucosa of digestive tract
 • Fibrous capsules of joints and organs

Dense Irregular Connective Tissue

Dense Regular Connective Tissue
• Description
 • Primarily *parallel* collagen fibers
 • Fibroblasts and some elastic fibers
 • Poorly vascularized
 • Forms *fascia*

Dense Regular Connective Tissue
• Function
 • Attaches muscle to bone
 • Attaches bone to bone
 • Withstands great stress in one direction
• Location
 • Tendons and ligaments
 • Aponeuroses
 • Fascia around muscles

Dense Regular Connective Tissue

Elastic Connective Tissue
• Description
 • Elastic fibers predominate
• Function—allows recoil after stretching
• Location
 • Within walls of arteries, in certain ligaments, and surrounding bronchial tubes

Elastic Connective Tissue

Cartilage
• Firm, flexible tissue
• Contains no blood vessels or nerves
• Matrix contains up to 80% water
• Cell type—chondrocyte

Types of Cartilage
• Hyaline cartilage
• Elastic cartilage
• Fibrocartilage

Hyaline Cartilage
• Description
 • Imperceptible collagen fibers (hyaline = glassy)
 • Chondroblasts produce matrix
 • Chondrocytes lie in lacunae

Hyaline Cartilage
• Function
 • Supports and reinforces
 • Resilient cushion
 • Resists repetitive stress

Hyaline Cartilage
• Location
 • Fetal skeleton
 • Ends of long bones
 • Costal cartilage of ribs
 • Cartilages of nose, trachea, and larynx

Elastic Cartilage
• Description
 • Similar to hyaline cartilage
 • More elastic fibers in matrix

Elastic Cartilage
• Function
 • Maintains shape of structure
 • Allows great flexibility
• Location
 • Supports external ear
 • Epiglottis

Elastic Cartilage

Fibrocartilage
• Description
 • Matrix similar but less firm than hyaline cartilage
 • Thick collagen fibers predominate
• Function
 • Tensile strength and ability to absorb compressive shock

Fibrocartilage
• Location
 • Intervertebral discs
 • Pubic symphysis
 • Discs of knee joint

Fibrocartilage

Bone Tissue
• Description
 • Calcified matrix containing many collagen fibers
 • Osteoblasts—secrete collagen fibers and matrix
 • Osteocytes—mature bone cells in lacunae
 • Well vascularized

Bone Tissue
• Function
 • Supports and protects organs
 • Provides levers and attachment site for muscles
• Stores calcium and other minerals
• Stores fat
• Marrow is site for blood cell formation
• Location
 • Bones

Bone Tissue

Blood Tissue
• An atypical connective tissue
• Develops from mesenchyme
• Consists of cells surrounded by nonliving matrix

Blood Tissue
• Description
 • Red and white blood cells in a fluid matrix
• Function
 • Transport of respiratory gases, nutrients, and wastes
• Location
 • Within blood vessels

Blood Tissue

Covering and Lining Membranes
• Combine epithelial tissues and connective tissues
• Cover broad areas within body
• Consist of epithelial sheet plus underlying connective tissue

Three Types of Membranes
• Cutaneous membrane—skin
• Mucous membrane
 • Lines hollow organs that open to surface of body
 • An epithelial sheet underlain with layer of *lamina propria*

Three Types of Membranes
• Serous membrane
 • Simple squamous epithelium lying on areolar connective tissue
 • Lines closed cavities
 • *Pleural, peritoneal, and pericardial cavities*
Covering and Lining Membranes

Muscle Tissue
• Skeletal muscle tissue
• Cardiac muscle tissue
• Smooth muscle tissue

Skeletal Muscle Tissue
• Description
 • Long, cylindrical cells
 • Multinucleate
 • Obvious striations

Skeletal Muscle Tissue
• Function
 • Voluntary movement
 • Manipulation of environment
 • Facial expression
• Location
 • Skeletal muscles attached to bones (occasionally to skin)

Cardiac Muscle Tissue
• Description
 • Branching cells, striated
 • Generally uninucleate
 • Cells interdigitate at intercalated discs

Cardiac Muscle Tissue
• Function
 • Contracts to propel blood into circulatory system
• Location
 • Occurs in walls of heart

Smooth Muscle Tissue
• Description
• Spindle-shaped cells with central nuclei
• Arranged closely to form sheets
• No striations

Smooth Muscle Tissue
• Function
 • Propels substances along internal passageways
 • Involuntary control
• Location
 • Mostly walls of hollow organs

Smooth Muscle Tissue

Nervous Tissue
• Description
 • Main components are brain, spinal cord, and nerves
 • Contains two types of cells
 • *Neurons—excitatory cells*
 • *Supporting cells (neuroglial cells)*

Nervous Tissue
• Function
 • Transmit electrical signals from sensory receptors to effectors
• Location
 • Brain, spinal cord, and nerves

Nervous Tissue

Tissue Response to Injury
• **Inflammatory response**
 • Nonspecific, local response
 • Limits damage to injury site
• **Immune response**
 • Takes longer to develop and very specific
 • Destroys particular microorganisms at site of infection

Inflammation
• Acute inflammation
 • Heat
 • Redness
 • Swelling
• Pain
 • Chemicals signal nearby blood vessels to dilate
• **Histamine** increases permeability of capillaries

Inflammation
• **Edema**—accumulation of fluid
 • Helps dilute toxins secreted by bacteria
 • Brings oxygen and nutrients from blood
 • Brings antibodies from blood to fight infection

Repair
• **Regeneration**
 • Replacement of destroyed tissue with same type of tissue
• **Fibrosis**
 • Proliferation of scar tissue
• **Organization**
 • Clot is replaced by granulation tissue

The Tissues Throughout Life
• At the end of second month of development:
 • Primary tissue types have appeared
 • Major organs are in place
• Adulthood
 • Only a few tissues regenerate
 • Many tissues still retain populations of stem cells

Capacity for Regeneration
• **Good to excellent:**
 • *ET, bone CT, areolar CT, dense irregular CT, and blood forming CT*
• **Moderate:**
 • *Smooth muscle, dense regular CT*

Capacity for Regeneration
• **Weak:**
 • *Skeletal MT, cartilage*
• **None or almost none:**
 • *Cardiac MT, Nervous Tissue*

The Tissues Throughout Life
• With increasing age:
• Epithelia thin
• Collagen decreases
• Bones, muscles, and nervous tissue begin to atrophy
• Poor nutrition and poor circulation lead to poor health of tissues

5
The Integumentary System

The Skin and the Hypodermis
• Skin—our largest organ
 • Accounts for 7% of body weight
 • Varies in thickness from 1.5–4.4mm
 • Divided into two distinct layers
 • Epidermis
 • Dermis
 • Hypodermis—lies deep to the dermis

Skin Structure

The Skin and Hypodermis
• Functions
 1. Protection—cushions organs and protects from bumps, chemicals, water loss, UV radiation
 2. Regulation of body temperature
 3. Excretion—urea, salts, and water lost through sweat

The Skin and Hypodermis
• Functions (continued)
 4. Production of vitamin D
 5. Sensory reception—keeps us aware of conditions at the body’s surface

Epidermis
• Contains four main cell types
 • Keratinocytes
 • Location—stratum spinosum; produce keratin a fibrous protein
• **Melanocytes**
 - *Location*—basal layer; manufacture and secrete pigment

Epidermis
• Contains four main cell types (continued)
 • **Tactile epithelial cells**
 - *Location*—basal layer; attached to sensory nerve endings
 • **Dendritic cells**
 - *Location*—stratum spinosum; part of immune system; macrophage-like

Epidermis
• **Keratinocytes**—most abundant cell type in epidermis
 • Arise from *deepest layer of epidermis*
 • Produce **keratin**, a tough fibrous protein
 • Produce **antibodies** and **enzymes**
 • Keratinocytes are *dead at skin's surface*

Layers of the Epidermis
• Stratum basale (stratum geminatum)
• Stratum spinosum
• Stratum granulosum
• Stratum lucidum (only in thick skin)
• Stratum corneum

Epidermal Cells and Layers of the Epidermis
• **Stratum spinosum** (spiny layer)
 - “Spiny” appearance caused by:
 - *Artifacts of histological preparation*
 - Contains thick bundles of **intermediate filaments** (tonofilaments)
 - *Resist tension*
 - *Contain protein prekeratin*
 - Contains star-shaped dendritic cells
 - *A type of macrophage*
 - *Function in immune system*

Layers of the Epidermis
- **Stratum granulosum**
 - Consists of keratinocytes and tonofilaments
 - Tonofilaments contain:
 - *Keratohyaline granules—help form keratin*
 - *Lamellated granules—contain a waterproofing glycolipid*

Layers of the Epidermis
- **Stratum lucidum** (clear layer)
 - Occurs only in **thick skin**
 - *Locations of thick skin—palms and soles*
 - Composed of a few rows of flat, dead keratinocytes

Layers of the Epidermis
- **Stratum corneum** (horny layer)
 - Thick layer of dead keratinocytes and thickened plasma membranes
 - Protects skin against abrasion and penetration

Dermis
- Second major layer of the skin
- Strong, flexible connective tissue
- Richly supplied with blood vessels and nerves
- Has two layers
 - **Papillary layer**—includes dermal papillae
 - **Reticular layer**
 - *Deeper layer—80% of thickness of dermis*
- **Flexure lines**
 - Creases on palms
The Two Regions of the Dermis

Dermal Modifications

Hypodermis
- Deep to the skin—also called *superficial fascia*
- Contains *areolar* and *adipose CT*
- Anchors skin to underlying structures
- Helps *insulate* the body

Skin Color
- Three pigments contribute to skin color
 - *Melanin*
 - *Most important pigment—made from tyrosine*
 - *Carotene*
 - *Yellowish pigment from carrots and tomatoes*
 - *Hemoglobin*
 - *Caucasian skin contains little melanin*
 - *Allows crimson color of blood to show through*

Nails
- *Nails*—scalelike modification of epidermis
 - Made of hard keratin
 - Parts of the nail
 - *Free edge*
 - *Body*
 - *Root*
 - *Nail folds*
 - *Eponychium—cuticle*

Structure of a Nail

Appendages of the Skin
- *Hair*
 - Flexible strand of dead, keratinized cells
 - Hard keratin—tough and durable
 - Chief parts of a hair
 - *Root—imbedded in the skin*
 - *Shaft—projects above skin's surface*

Appendages of the Skin
• Hair has three concentric layers of keratinized cells
 • **Medulla**—central core
 • **Cortex**—surrounds medulla
 • **Cuticle**—outermost layer

Cross Section of a Hair

Appendages of the Skin
• **Hair follicles**
 • Extend from epidermis into dermis
• **Hair bulb**
 • Deep, expanded end of the hair follicle
• **Root plexus**
 • Knot of sensory nerves around hair bulb

Longitudinal Section of Base of Follicle

Appendages of the Skin
• Wall of hair follicle
 • CT root sheath
 • ET root sheath
• **Arrector pili** muscle
 • Bundle of **smooth muscle**
 • Hair stands erect when *arrector pili* contracts

Types and Growth of Hair
• **Vellus hairs**
 • Body hairs of women and children
• **Terminal hairs**
 • Hair of scalp
 • Axillary and pubic area (at puberty)
• Hair thinning and baldness
 • Due to aging
 • Male pattern baldness

Sebaceous Glands
• Occur over entire body
 • Except palms and soles
• Secrete **sebum**—an oily substance
 • **Simple alveolar glands**
• **Holocrine secretion**—entire cell breaks up to form secretion
 • Most are associated with a hair follicle
• Functions of **sebum**
 • Collects dirt; softens and lubricates hair and skin

Sebaceous Glands

Sweat Glands

• **Sweat glands** (sudoriferous glands) widely distributed on body
• **Sweat**—is a blood filtrate
 • 99% water with some salts
 • Contains traces of metabolic wastes
 • *About 2% urea*

Sweat Glands

Sweat Glands

• Two types of sweat gland
 • **Eccrine gland** (merocrine)
 • Most numerous—these produce true sweat
 • **Apocrine gland**
 • Confined to axillary, anal, and genital areas
 • Produce a special kind of sweat
 • Musky odor—attracts a mate
 • Signal information about a person’s immune system, MHC
 • **Ceruminous glands and mammary glands**
 • Modified apocrine glands

Burns

• Classified by **severity**
 • **First-degree burn**—only upper epidermis is damaged
 • **Second-degree burn**—upper part of dermis is also damaged
 • Blisters appear
 • *Skin heals with little scarring*
 • **Third-degree burn**
 • Consumes thickness of skin
 • *Burned area appears white, red, or blackened*

Estimating Burns Using the Rule of Nines
Skin Cancer

• **Basal cell carcinoma**
 • Least malignant and most common

• **Squamous cell carcinoma**
 • Arises from keratinocytes of stratum spinosum

• **Melanoma**
 • A cancer of melanocytes
 • The most dangerous type of skin cancer

Skin Cancer

The Skin Throughout Life

• **Epidermis**
 • Develops from embryonic **ectoderm**

• **Dermis and hypodermis**
 • Develop from **mesoderm**

• **Melanocytes**
 • Develop from neural crest cells

The Skin Throughout Life

• **Fetal skin**
 • Well formed after the fourth month
 • At 5–6 months, the fetus is covered with **lanugo** (downy hairs)
 • Fetal sebaceous glands produce **vernix caseosa**

The Skin Throughout Life

• **Middle to old age**
 • Skin thins and becomes less elastic
 • Shows harmful effects of environmental damage
 • Skin inflammations become more common